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The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence
are reviewed. In the last decade, the theory of these phenomena and experimental realizations have
progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse
and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining
the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and
nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are
then considered in more detail. Next, an introductory overview of the physics of wave collapse and
strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover
numerical simulations of Langmuir collapse and strong turbulence and experimental applications to
space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions.
Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also
discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical
plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse
and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of
possible future research directions. [S0034-6861(97)00502-3]
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I. INTRODUCTION

In a nonlinear medium, the refractive index depends
on the intensity of waves present. This allows waves to
interact with waves, mediated by these refractive-index
variations. One such interaction is the phenomenon of
self-focusing in which an intense wave packet raises the
refractive index of the medium, leading to an increasing
tendency for the waves to refract and be trapped in re-
gions of highest intensity. In one dimension, this effect
can be balanced by dispersion, leading to the formation
of stable solitons (Bullough and Caudrey, 1980). How-
ever, in two or three dimensions, self-focusing can domi-
nate over dispersion, beyond a threshold intensity, lead-
ing to runaway wave collapse. A collapsing wave packet
self-focuses to ever shorter scales and higher intensities
until other physical effects intervene to arrest it, most
often by means of dissipation. Figure 1 shows the con-
traction of the core of an intense Langmuir wave packet
seen in a three-dimensional simulation of an unmagne-
tized plasma by Robinson et al. (1988).

It is possible to sustain many coexisting collapsing
wave packets by supplying energy from an external
source, or pump, to balance losses incurred when col-
lapsing packets are arrested. This case corresponds to
strong turbulence, which is chiefly distinguished from its
better-known counterpart weak turbulence by the domi-
nance of phase-coherent four-wave or many-wave inter-
actions (rather than three-wave interactions and/or
random-phase interactions), as discussed in Sec. III. Fig-
ures 2(a) and 2(b) show ensembles of intense, coherent
wave packets amid background turbulence, as seen in
two- and three-dimensional simulations, respectively, of
strong turbulence in an unmagnetized plasma (Robinson
and Newman, 1990a).

The main aims of this review are to explain the phys-
ics behind wave collapse and strong turbulence, to pro-

FIG. 1. Collapse of a three-dimensional Langmuir wave
packet seen in numerical simulations (Robinson et al., 1988).
A surface of constant electric-field strength is drawn at 80% of
the maximum value at the center of the packet. Time increases
to the right and each frame has linear dimensions of 80 Debye
lengths [see Eq. (2.1) for definition] in each direction.
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vide an overview of recent developments in the field,
and to show how these ideas can be applied more
widely. A decade has passed since the publication of the
last general reviews of wave collapse and strong turbu-
lence aimed at a broad audience (Rudakov and Tsytov-
ich, 1978; Sagdeev, 1979; Thornhill and ter Haar, 1978;
Zakharov, 1984; Goldman, 1984; Shapiro and
Shevchenko, 1984; Kuznetsov et al., 1986), although
some more specialized reviews have appeared (e.g., ter
Haar and Tsytovich, 1981; Zakharov et al., 1985;
Rubenchik and Zakharov, 1991; Sagdeev et al., 1991;

FIG. 2. Strong Langmuir turbulence from numerical simula-
tions by Robinson and Newman (1990a). (a) Two-dimensional
case, showing contours of constant Langmuir energy density.
The lettered peaks are localized, coherent wave packets, sub-
ject to collapse. Regions in between are filled with low-level
incoherent waves. The system has dimensions of 1340 Debye
lengths [see Eq. (2.1) for definition] in each direction. (b)
Three-dimensional case, showing a surface of constant energy
density at 10% of the maximum value, enclosing the high-field
regions of localized, coherent wave packets. Regions in be-
tween are filled with low-level incoherent waves. The system
has dimensions of 800 Debye lengths in each direction.
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DuBois and Rose, 1991). In this interval, many advances
in the theory of such phenomena have occurred, render-
ing obsolete some previous pictures. In parallel, there
has been major progress in two- and three-dimensional
numerical simulations of such systems, with massive in-
creases in computing power leading to many significant
new insights. In addition, a variety of applications of
wave collapse to phenomena in the laboratory and na-
ture have been carried out, yielding a far wider range of
tests of the theory than was previously possible. All
these aspects point to the need for a fresh review.

One problematic area in the literature is that some
recent applications and theoretical works have relied on
outmoded or purely one-dimensional results, without
the benefit of recent theoretical insights into multidi-
mensional turbulence. This situation also motivates this
review, in particular the inclusion of a section (Sec.
VIII.A) covering common misconceptions and misun-
derstandings of wave collapse and strong-turbulence
phenomena.

To minimize the mathematical and physical ‘‘over-
head’’ required, attention is concentrated chiefly on the
simplest and best understood case of Langmuir waves,
which are electrostatic waves near the plasma frequency
in an unmagnetized plasma. In solid-state physics, analo-
gous waves in metals and semiconductors are called
plasma waves (Kittel, 1976). Collapse and strong turbu-
lence of Langmuir waves are reasonably well under-
stood after many years of study, which began in earnest
with the work of Zakharov (1972), although Hasegawa
(1970) analyzed a related system involving cyclotron
waves somewhat earlier. Study of the Langmuir wave
system provides a relatively simple illustration of the rel-
evant effects, a strong basis for study of other collapsing
and turbulent systems, and many useful tools with which
to do so. Nonlinear Langmuir waves are also important
in their own right, with numerous applications in the
laboratory and nature, including ionospheric-
modification experiments, planetary radio emissions,
relativistic-electron-beam systems, and laser-plasma ex-
periments, as discussed in Sec. VIII. It should be empha-
sized, however, that other wave systems are also dis-
cussed (chiefly in Sec. IX). These include waves in
nonlinear optical media (Chiao et al., 1964; Sodha et al.,
1976; Shen, 1984; Boyd, 1992; Saleh and Teich, 1991),
upper- and lower-hybrid plasma waves (Sturman, 1976;
Lipatov, 1977), and deep-water waves (Davey and Stew-
artson, 1974).

Sections II and III of this paper introduce the essen-
tial background physics of linear waves, nonlinear
refractive-index variations, and weak-turbulence theory.
These sections also introduce the Zakharov equations
(Zakharov, 1972), which describe the nonlinearities es-
sential to Langmuir collapse and strong turbulence. The
derivation of these equations is briefly outlined, their
regimes of validity are delimited, and the limit in which
they reduce to the standard (cubic) nonlinear Schrö-
dinger equation is discussed, emphasizing the physics in
each case.
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
Section IV briefly outlines the current picture of the
physics of wave collapse and strong turbulence to orient
the reader prior to the more detailed material that fol-
lows. This section introduces the key ideas of self-
focusing, collapse, and arrest. It then goes on to outline
the wave-packet cycle of accumulation, or nucleation, of
energy into localized packets, followed by nonlinear col-
lapse, arrest, relaxation, and renucleation, that has
emerged as a key element of strong-turbulence theory
(Doolen et al., 1985). The basic elements of a statistical
theory of strong turbulence are also laid out in this sec-
tion. Together, Secs. II–IV provide a mini-review of the
main ideas. Readers who are not concerned with the
detailed theory can skip Secs. V–VII and proceed di-
rectly to discussion of experimental applications.

Wave collapse is considered in detail in Sec. V, track-
ing a packet through the cycle of nucleation, collapse,
arrest, relaxation, and renucleation. The structure of
nucleating packets and their coupling to an external
pump is addressed. A means of calculating collapse
thresholds by Hamiltonian methods is also briefly re-
viewed. Collapse evolution is discussed in detail, along
with the arrest of collapse and subsequent relaxation of
remnant structures. Throughout this section, compari-
sons with numerical simulations are made.

Strong turbulence is the focus of Sec. VI, which con-
centrates particularly on statistical properties of plasmas
containing a multitude of collapsing wave packets. Cal-
culations of such properties primarily use a two-
component model of the waves in which the collapsing
packets make up one component, amid a sea of lower-
level incoherent waves that constitute the second (Rob-
inson and Newman, 1990a, 1990b; Robinson, 1996a).
Properties such as the scalings of averaged quantities,
power spectra, and distributions of field strengths are
calculated for equilibrium and nonequilibrium plasmas
pumped by a variety of energy sources. Again, numeri-
cal evidence for the picture presented is discussed.

Numerical simulations of wave collapse and strong
turbulence have confirmed many theoretical predictions
and have led to additional insights that have then been
incorporated in further theoretical work—a particularly
fruitful interplay for the nonlinear wave interactions
considered here. In Sec. VII the results of numerical
simulations in one to three dimensions are discussed,
with emphasis on key advances. This section covers re-
sults obtained using solutions of the Zakharov, nonlin-
ear Schrödinger, and Vlasov partial differential equa-
tions, and particle-in-cell methods.

Common misconceptions surrounding strong turbu-
lence and wave collapse are discussed in Sec. VIII.A.
We then discuss a selection of applications and experi-
mental evidence for wave collapse and strong turbu-
lence. These applications include electron-beam experi-
ments (e.g., Quon et al., 1974; Janssen, Bonnie,
Granneman, Krementsov, and Hopman, 1984; Wong
and Cheung, 1984; Levron et al., 1987; Robinson and
Newman, 1990c; Melatos et al., 1996), the ionosphere
(e.g., Cheung et al., 1989, 1992; DuBois et al., 1990,
1993a, 1993b), planetary foreshocks (Newman, 1985;
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Robinson and Newman, 1991a; Cairns and Robinson,
1992a, 1995a), type-III radio bursts in the solar wind
(e.g., Papadopoulos et al., 1974; Nicholson et al., 1978;
Robinson, Willes, and Cairns, 1993), and laser-plasma
interactions (e.g., Kruer, 1988; Baldis et al., 1991;
Rubenchik and Zakharov, 1991). Some of the applica-
tions in this section are to plasmas in which there is a
weak magnetic field, but magnetic effects in general do
not dominate collapse.

Section IX outlines generalizations of the basic theory
to include waves governed by the nonlinear Schrödinger
equation, optical systems (some of which historically
preceded Zakharov’s, 1972, work on plasmas),
magnetized-plasma waves in auroral, solar, and astro-
physical contexts where magnetic effects dominate, elec-
tromagnetic waves in dielectrics and semiconductors,
and deep-water waves. Some of these generalizations
have been explored in great detail, while others remain
at the cutting edge of research. Hence, when concluding,
Sec. X briefly reviews some of the main results and open
questions, as well as some promising future research di-
rections.

Before proceeding, it is worth noting some of the limi-
tations of the present review. First, it does not pretend
to be exhaustive. Rather, it concentrates on the current
state of the theory and applications and some of the
most important inputs that have led to that state. Pe-
ripheral material, historical curiosities, and apparent
dead ends have been largely omitted. Second, it does not
deal with the substantial body of literature on wave col-
lapse in systems of arbitrary dimensionality (e.g., Kuz-
netsov et al., 1986; Zakharov, Kosmatov, and Shvets,
1989, and references cited therein). Instead, it focuses
solely on one- to three-dimensional systems. Third, it
deemphasizes somewhat some applications that have
been discussed in excellent recent reviews and other
major papers. Of note in this context are applications
to Langmuir turbulence excited by ionospheric-
modification experiments, which were discussed in detail
by DuBois et al. (1990, 1993b). Laser-plasma interac-
tions also fall into this category, and the reader is re-
ferred to the book by Kruer (1988) and recent reviews
for further information (Baldis et al., 1991; Rubenchik
and Zakharov, 1991). Fourth, because of the emphasis
here on wave physics, particle acceleration by waves is
not discussed in detail, although it is an extremely im-
portant aspect of nonlinear wave physics. Nor are non-
linear processes that result in emission of secondary
waves treated in much detail, despite their central sig-
nificance in many applications.

II. BASIC PHYSICS

This section briefly reviews the essential linear and
nonlinear wave physics and discusses the nonlinear wave
equations most commonly used to study wave collapse
and strong turbulence. Nonlinear wave equations gov-
erning strong turbulence are then derived heuristically,
emphasizing the main physical effects, and some of their
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
main properties are summarized. In this and subsequent
sections, SI units are used, except in rescaled dimension-
less equations.

A. Linear waves

A fully ionized unmagnetized plasma, in which elec-
trons and ions individually have velocity distributions
near thermal equilibrium, supports three weakly
damped linear wave modes—Langmuir, ion sound, and
electromagnetic waves. (Additional modes associated
with the presence of intense particle beams or other
strongly non-Maxwellian features of electron or ion dis-
tributions are not considered here.) These waves are es-
sential elements of the theory and we review their prop-
erties next.

(i) Langmuir, or electron-plasma, waves are waves in
which electrons and ions oscillate out of phase. Electro-
static forces resulting from charge separation provide
the restoring force, while electrons provide inertia. In a
thermal plasma, the frequency vL and wave number k
of this high-frequency electrostatic wave satisfy the dis-
persion relation

vL'vp~113k2lD
2 /2! (2.1)

(Tonks and Langmuir, 1929; Melrose, 1986a; Swanson,
1989; Stix, 1992; Bittencourt, 1995), where the plasma
frequency vp is given by vp

25Nee2/mee0, Ne is the num-
ber density of electrons, lD5Ve /vp is the electron De-
bye length, Ve5(kBTe /me)1/2 is the electron thermal
velocity, Te is the electron temperature, and me is the
electron mass. Analogous waves exist in metals and
semiconductors (Sodha et al., 1976; Kittel, 1976).

Dissipation of linear Langmuir waves results from
Landau damping due to resonance with electrons mov-
ing at the phase velocity of the waves. The temporal
damping rate gL(k) of Langmuir waves can be calcu-
lated from kinetic theory, giving (Melrose, 1986a; Swan-
son, 1989; Stix, 1992)

gL~k!5vpS p

8 D 1/2

~klD!23expS 2
1

2k2lD
2 D , (2.2)

in a Maxwellian (i.e., thermal) plasma for (k2lD)2!1,
where damping is small. Note that throughout this pa-
per, damping coefficients are defined in terms of wave
amplitudes; energy damping coefficients are exactly
twice as big.

(ii) Ion sound waves are low-frequency (i.e.,
vS!vp) electrostatic waves with the dispersion relation
(Tonks and Langmuir, 1929; Melrose, 1986a; Swanson,
1989; Stix, 1992; Bittencourt, 1995)

vS5kvS , (2.3)

vS5~gme /mi!
1/2Ve , (2.4)

where mi is the ion mass and g is the ratio of specific
heats of the plasma, with

g5113Ti /Te , (2.5)
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where Ti is the ion temperature. In these waves elec-
trons and ions oscillate almost in phase, corresponding
to density perturbations, with ions providing the inertia,
and electron and ion pressures providing the restoring
force. These waves have a damping coefficient (Melrose,
1986a; Swanson, 1989; Stix, 1992)

gS~k!

vS~k!
5S pg

8 D 1/2F S me

mi
D 1/2

1gS Te

2Ti
D 3/2

e2gTe /TiG , (2.6)

where the first and second terms in the brackets arise
from electron and ion Landau damping, respectively.
Equation (2.6) implies that ion sound waves are heavily
damped except for Te@Ti .

(iii) Transverse electromagnetic waves are high-
frequency waves that obey the dispersion relation

vT5~vp
21k2c2!1/2. (2.7)

These waves are undamped in a collisionless unmagne-
tized plasma because their phase velocity always exceeds
the speed of light and, hence, they cannot resonate with
plasma particles.

B. Nonlinear effects: heuristic

The Langmuir and transverse wave frequencies, Eqs.
(2.1) and (2.7), depend on the plasma density through
vp , with a larger density corresponding to a smaller re-
fractive index. Hence density fluctuations, such as those
associated with ion sound waves, will affect the high-
frequency waves, causing them to refract into regions of
low density and high refractive index. This provides a
nonlinear mechanism to couple high-frequency waves to
ion sound waves.

A heuristic derivation of the equation obeyed by
Langmuir waves in the presence of density fluctuations
can be made by generalizing Eq. (2.1) to

vL'vp1
3k2Ve

2

2vp
1

dNe

2Ne
vp2igL~k!, (2.8)

where vp denotes the unperturbed plasma frequency
here, dNe!Ne is a small density perturbation,
(klD)2!1 has been assumed, and the damping has
been included. For waves near the plasma frequency
vp , the electric field E can be approximated by

E5 1
2 @Eexp~2ivpt !1E* exp~ ivpt !# , (2.9)

where the complex envelope field E varies slowly com-
pared with vp . If we Fourier-transform Eq. (2.8) to co-
ordinate space and apply an additional divergence op-
erator, acting on the left, we find

¹•S i
]

]t
1

3Ve
2

2vp
¹21iĝLD E5¹•S vpdNe

2Ne
ED , (2.10)

where ĝL is an appropriate Langmuir damping operator,
which can also be used to incorporate instabilities
(gL(k),0). Note that the additional divergence opera-
tors acting on the left of both sides of Eq. (2.10) ensure
that the Langmuir field remains electrostatic, despite the
coupling to density perturbations (the quantity dNeE is
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not necessarily curl free). Equation (2.10) is the first
(electrostatic) Zakharov equation (Zakharov, 1972). This
must be supplemented by an auxiliary equation for
the spatially uniform component of E, i] tE0
5vp(dNeE/2Ne)0, where the subscript 0 denotes the
k50 component.

The first Zakharov equation shows how density fluc-
tuations affect Langmuir waves. To obtain a closed sys-
tem of equations, the effect of Langmuir waves on den-
sity fluctuations must also be included. An intense
packet of coherent Langmuir waves can produce a den-
sity depression via the ponderomotive force, which re-
produces the expression for wave pressure in the inco-
herent case. To zeroth order, a particle of charge q and
mass m in such a field oscillates about a fixed mean
position. However, when nonuniformities of the field are
accounted for, the mean position (averaged over a time
scale ;vp

21) drifts slowly out of the packet as if subject
to the force (Boot and Harvie, 1957; Gaponov and
Miller, 1958; Melrose, 1986a)

FP52
q2

4mvp
2 ¹uEu252¹fP , (2.11)

where fP is the ponderomotive potential energy. This
force is much stronger for electrons than ions, owing to
the inverse dependence on mass in Eq. (2.11). Hence
electrons are expelled from the packet, setting up an
ambipolar field, which then drags ions out to maintain
quasineutrality (i.e., equality of electron and ion number
densities to zeroth order). This indirect effect on ions is
a factor mi /me greater than the direct ion ponderomo-
tive force. There is thus an acceleration FP /mi of the
entire plasma.

The divergence of the ponderomotive force enters as
a forcing term in the linear ion-sound-wave equation,
because the net force on an infinitesimal volume de-
pends on variations of FP across that volume. This gives

S ]2

]t2 12ĝS

]

]t
2vS

2¹2D dNe5
e0

4mi
¹2uEu2, (2.12)

where setting the right-hand side to zero gives the linear
ion-sound-wave equation with damping. Equation (2.12)
is the second Zakharov equation (Zakharov, 1972).

The Zakharov equations (2.10) and (2.12) are often
rewritten in dimensionless form by introducing the
rescaled variables

r85S 4me

9mi
D 1/2 r

lD
, (2.13)

t85
2me

3mi
vpt , (2.14)

n85
3mi

4me

dNe

Ne
, (2.15)

uE8u25
3mi

4me

e0uEu2

4NekBTe
, (2.16)

where r denotes position. Making these replacements,
then omitting the primes, yields
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¹•S i
]

]t
1¹21iĝLDE5¹•~nE!, (2.17)

S ]2

]t2 12ĝScS

]

]t
2cS

2¹2Dn5¹2uEu2, (2.18)

with i] tE05(nE)0, where all quantities are expressed in
the rescaled units and cS is the ratio of the sound speed
to its value at Ti50. In this review we use both dimen-
sional and dimensionless units, distinguishing them
where necessary.

In the adiabatic or subsonic limit in which density per-
turbations are changing slowly, the time derivatives in
Eq. (2.18) can be neglected, yielding

n52cS
22uEu2. (2.19)

Substitution into Eq. (2.18) then shows that the Lang-
muir waves obey the electrostatic (cubic) nonlinear
Schrödinger equation

¹•S i
]

]t
1¹21iĝL1cS

22uEu2DE50, (2.20)

in the adiabatic limit. This equation is extremely useful
for understanding many qualitative features of wave col-
lapse and strong-turbulence phenomena, as we shall see
below.

The nonlinear Schrödinger equation is commonly
used in nonlinear optics to approximate the response of
nonlinear media. In this context, n corresponds to a
refractive-index perturbation (with positive n giving a
negative perturbation). In Kerr media, one has n
}2uEu2 and Eq. (2.20) follows in appropriately rescaled
units. We consider Kerr media further in Sec. IX.A.

For many years it was thought that the condition
W!1 was required for the validity of the Zakharov
equations, with

W5
e0uEu2

4NekBTe
. (2.21)

[Alternatively, in terms of the root-mean-square (rms)
field Erms , one has W5e0Erms

2 /2NekBTe .] However, it
has more recently been shown that the correct condition
is

W~klD!2&1, (2.22)

if damping is ignored, where W and k are the character-
istic energy density and wave number, respectively, of
the Langmuir waves in question, i.e., not necessarily of
the entire spectrum (Newman et al., 1990; Mounaix
et al., 1991; DuBois et al., 1995a; Vladimirov et al., 1995);
this point is discussed further in Sec. V.F. It has been
extensively verified by Newman et al. (1990) that W!1
is not required, but that dissipation indirectly imposes
the condition W&1 in practice; otherwise localized heat-
ing can change the local electron temperature and hence
the coefficients of the wave equation. The Zakharov
equations require dNe!Ne for their validity. This can
also indirectly restrict W by requiring that the Langmuir
ponderomotive force not be so strong as to produce an
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
unacceptably large density well. These two ‘‘indirect’’
constraints are thus the more relevant, practically.

In addition to the above conditions, the nonlinear
Schrödinger equation requires that velocities associated
with changes in the Langmuir envelope be smaller than
the sound velocity. Comparison of the characteristic
sizes of the terms in Eq. (2.18) shows that this requires
W,Cme /mi , where C is a constant. Crude estimates
yield C'1, but simulations and more careful analyses
seem to imply a much larger value (see Sec. VI.C for
further discussion).

C. Nonlinear effects: systematic

This section briefly outlines a more formal derivation
of the Zakharov equations. The details are not necessary
and it can be omitted on a first reading.

The effect of density fluctuations on Langmuir and
transverse waves can be studied by treating the plasma
as a fluid and linearizing the hydrodynamic equations
(Zakharov, 1972, 1984; S̆korić and ter Haar, 1980), along
with Maxwell’s equations, subject to quasineutrality of
the low-frequency oscillations. These steps yield

1
c2 S ]2E

]t2 1vp
2ED1¹3~¹3E!23

Ve
2

c2 ¹¹•E

52vp
2 dNe

Ne
E, (2.23)

in dimensional form. For dNe50 this equation has both
Eqs. (2.1) and (2.7) as solutions.

If beats at 2vp and zero frequency are neglected,
along with the term ]2E/]t2, Eq. (2.23) becomes

22i
vp

c

]E
]t

1¹3~¹3E!23
Ve

2

c2 ¹¹•E52vp
2 dNe

Ne
E.

(2.24)

Equation (2.24) is the first electromagnetic Zakharov
equation, which incorporates the effects of density fluc-
tuations on both Langmuir and transverse waves.

In a nonrelativistic plasma Ve
2/c2 is small and the

Langmuir waves are longitudinal waves that can be de-
scribed by an electrostatic potential F , with E52¹F
(Zakharov, 1972, 1984; Kuznetsov et al., 1986; Melrose,
1986a). If we introduce F into Eq. (2.24) and take the
divergence of both sides to project out the electrostatic
Langmuir component of the equation, we obtain Eq.
(2.17) in dimensionless units. The condition Ve

2/c2!1 is
thus an additional requirement for the validity of the
electrostatic Zakharov equation (2.17).

The second Zakharov equation (2.18) can be derived
more rigorously by noting that low-frequency oscilla-
tions involve slight charge separations, despite quasineu-
trality, because electrons have less inertia than do ions
(Zakharov, 1984). This leads to the appearance of an
ambipolar potential energy in addition to the pondero-
motive potential fP of Eq. (2.11). If the electrons are
distributed in the resulting potential according to a
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Boltzmann distribution, it can then be shown that Eq.
(2.18) results (Zakharov, 1984).

Before leaving this section, we note that Melrose
(1987b) derived the Zakharov equations by calculating
the quadratic and cubic plasma response tensors from
kinetic theory, then making suitable approximations.
This route is more complicated than the ones outlined
here, but has the advantage that the approximations are
more explicit. Goodman (1991), DuBois et al. (1995a),
and Vladimirov et al. (1995) also carried out kinetic
theory derivations of generalized Zakharov equations.

D. Conserved quantities

In the absence of damping, the nonlinear Schrödinger
equation (2.20) can be written in terms of the Hamil-
tonian H and the potential F

i
]

]t
¹2F5

dH

dF*
, (2.25)

where the right-hand side is the functional derivative

d

dF*
5

]

]F*
2(

j

d

dxj

]

]~]F* /]xj!
. (2.26)

In a D-dimensional system the Hamiltonian H in Eq.
(2.21) is (Gibbons et al., 1977; Zakharov et al., 1985)

H5E HdDr, (2.27)

H5u¹2Fu22 1
2 u¹Fu4 (2.28)

5u¹•Eu22 1
2 uEu4. (2.29)

The first term on the right of the Hamiltonian density
H in Eq. (2.28) or Eq. (2.29) corresponds to wave dis-
persion, while the second represents nonlinear self-
focusing. The negative sign indicates that self-focusing
tends to oppose dispersion, a point discussed in detail
below.

In the absence of damping, the nonlinear Schrödinger
equation (2.20) conserves the Hamiltonian, the total
number of Langmuir quanta N , the total Langmuir mo-
mentum P, and the total angular momentum M (Gib-
bons et al., 1977),

N5E uEu2dDr, (2.30)

Pj5E i

2(l51

3

~El] jEl* 2El* ] jEl!dDr, (2.31)

M5E ~ iE3E* 1r3P!dDr, (2.32)

where P is the integrand in Eq. (2.31). These conserved
quantities, and the Hamiltonian formulation in general,
prove to be of great use in studying nonlinear phenom-
ena in later sections.

If the initial divergence operators on both sides of the
first Zakharov equation (2.17) are omitted, the Za-
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kharov equations can also be written as Hamiltonian
equations, with

H5u¹•Eu21nuEu21 1
2 n21 1

2 u¹uu2, (2.33)

for cS51. The hydrodynamic flux potential u has been
introduced, which satisfies ut5n1uEu2 and nt5¹2u .
The first term on the right of Eq. (2.33) represents dis-
persion, while the others are nonlinear contributions.
The Zakharov equations conserve H , N , P, and M, with
the definitions as above, except that

Pj5E S i

2 (
l51

3

~El] jEl* 2El* ] jEl!2n] ju D dDr.

(2.34)

Although the version of the first Zakharov equation
without initial divergence operators may ultimately de-
velop nonelectrostatic fields with nonzero curl, it can
yield significant insights into the stability and short-term
dynamics of an initially curl-free system, as will be seen
in later sections. Setting n52uEu2 and u50 in Eqs.
(2.33) and (2.34) reproduces the nonlinear Schrödinger
forms of these quantities. Adding a term
a(¹3E* )•(¹3E) to H yields the dimensionless form
of the electromagnetic Zakharov equation (2.23) for
a5c2me/3kBTe (Gibbons et al., 1977).

III. WAVE-WAVE INSTABILITIES AND WEAK
TURBULENCE

The Zakharov equations contain terms describing
both three- and four-wave interactions between plane
waves, including decay of two waves to produce a third,
the inverse process of coalescence, and four-wave modu-
lational instability, which leads to breakup of a uniform
wave envelope into localized packets. These processes
are important in many weak-turbulence and strong-
turbulence contexts, and modified forms play a role in
the formation and collapse of wave packets. This section
first briefly reviews the phase-coherent plane-wave in-
stabilities, involving Langmuir waves and ion sound
waves, that are relevant to strong turbulence. It then
turns to weak turbulence, in which phase relationships
(and, usually, four-wave interactions) are unimportant
and the Langmuir waves can be described by their inten-
sities. Finally, the crossover from weak to strong turbu-
lence is discussed, along with conditions under which
both regimes can coexist.

A. Phase-coherent plane-wave instabilities

A monochromatic plane Langmuir wave of field
strength uEu is not necessarily stable in the presence of
the nonlinear terms in Eqs. (2.17) and (2.18). Such a
plane wave can be represented by the potential

F0~ t ,r!5
uEu
uku

exp@ ik•r2iv~k!t# . (3.1)

The first step in a linear stability analysis of this wave is
to add a small perturbation dF(t ,r) such that
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F5F01dF . (3.2)

The density response n to this potential has the general
form in Fourier space

n~V ,K!5
Te

Ne
G~V ,K!fP~V ,K!, (3.3)

where fP is given by Eq. (2.11) and G(V ,K) is the ap-
propriate Green function, which can be calculated from
plasma kinetic or fluid theory in various limits (e.g., Tsy-
tovich, 1977, 1995; Zakharov et al., 1985; Vladimirov
et al., 1995). Equation (3.3) generalizes the relationship
obtained by Fourier-transforming Eq. (2.12), for ex-
ample.

Linearization of Eq. (2.10) about F0 using Eq. (3.3)
yields the following dispersion equation for the density
response at V and K (Zakharov, 1984; Zakharov et al.,
1985):

11
vp

4
WG~V ,K!S cos2u1

v~k1K!2v~k!2V

1
cos2u2

v~k2K!2v~k!1V D50, (3.4)

where u6 is the angle between k and k6K, and W is the
ratio of Langmuir wave energy density to thermal en-
ergy density, given by Eq. (2.21). Equation (3.4) gener-
alizes earlier dispersion equations (e.g., Bardwell and
Goldman, 1976) by including the general Green function
G(V ,K). In the limit W→0 the only solutions of Eq.
(3.4) are linear ion sound waves, which correspond to a
pole of the Green function. Note that v and V can be
complex in Eq. (3.4), to incorporate growth and damp-
ing.

Zakharov et al. (1985) showed that five different insta-
bility regimes exist for monochromatic waves, depend-
ing on the values of W and k . These regimes are sum-
marized in Fig. 3 and discussed briefly below. This
discussion outlines the main physical features and clari-
fies the terminology, which has been the source of much
confusion in the literature. In general, this article follows
the terminology of Zakharov et al. (1985), but the insta-
bility regimes in Fig. 3 are numbered differently from
those in this reference. Linear damping is ignored in this
section, to concentrate attention on the nonlinear pro-
cesses. This precludes detailed discussion here of the
case of heavily damped density responses for Te&Ti
(the reader should see Zakharov et al., 1985, and the
references cited therein for more detail); such regimes
are, however, encountered in some applications covered
in Secs. VIII and IX, such as ionospheric-modification
experiments (DuBois et al., 1993a). Linear damping
tends to raise the thresholds for nonlinear processes.

1. Electrostatic decay instability

The electrostatic decay instability dominates in
Region I of Fig. 3, where k.k* /2 and
W,klD(me /mi)

1/2, with
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k* '
2
3 S gme

mi
D 1/2

kD , (3.5)

kD51/lD , and g given by Eq. (2.5). In this regime, a
Langmuir wave L decays into another, L8, and an ion
sound wave S in the process L→L81S illustrated in
Fig. 4 (Oraevskii and Sagdeev, 1962; Silin, 1965; DuBois
and Goldman, 1967; Nishikawa, 1968a, 1968b). Za-
kharov et al. (1985) discussed the threshold and maxi-
mum growth rate of this instability, finding that the
growth rate peaks with a value Gmax at K5K(Gmax) with

Gmax'
vp

2 S gme

mi
D 1/4

~klD!1/2W1/2,V , (3.6)

FIG. 3. Regimes of monochromatic, plane-wave Langmuir in-
stabilities as functions of klD and W . Approximate bound-
aries are as labeled. Region I: Electrostatic decay. Region II:
Modulational instability. Region III: Subsonic modulational in-
stability. Region IV: Supersonic modulational instability. Re-
gion V: Modified decay instability.

FIG. 4. Quantum view of the decay instability, showing decay
of a Langmuir quantum L of wave vector k into a product
Langmuir quantum L8 of wave vector kL8 and ion sound quan-
tum S of wave vector K.
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K~Gmax!'2k2k̂k* . (3.7)

Hence the most rapidly growing product Langmuir
wave’s wave vector satisfies kL8'2k1k̂k* , implying
that L8 is backscattered relative to L for kL.k* . The
wave number of the product Langmuir wave is reduced
in magnitude by k* , reflecting the loss of energy to the
product ion sound wave, with v(kL8)5v(k)2V , and
where V and K satisfy the dispersion relation (2.3).

In Region I of Fig. 3, the denominator of the second
term in the square brackets in Eq. (3.4) is very small for
the unstable waves, implying that the three waves in Fig.
4 satisfy energy conservation. Near vanishing of the de-
nominator of the first term in the square brackets corre-
sponds to coalescence between the parent wave and an
ion sound wave, but is not relevant here.

Figure 5 shows a plot of the Langmuir wave-number
spectrum from a two-dimensional simulation of turbu-
lence governed by the Zakharov equations (Robinson
and Newman, 1989). This shows that the product waves
L8 are spread over a broad arc in k space toward the left
of the figure, consistent with energy and momentum
conservation at the quantum level. Moreover, subse-
quent decays carry the energy toward k50 in a cascade,
visible as a series of arcs, successively closer to the ori-
gin. This implies that energy initially injected at large
k ends up in a condensate, seen as a peak near k50.
Waves with k,k* /2 cannot undergo further decays.
Note that the cascade could more precisely be termed an
inverse cascade, because it transfers energy in the oppo-
site direction to the more familiar Kolmogorov cascade
in fluid turbulence. No sign of coalescence of sound
waves with driven Langmuir waves is seen in Fig. 5 (i.e.,
no peak at higher k than the driver), although this does
not preclude coalescence at a very low rate. In some
cases of strong turbulence discussed later, the decay cas-
cade does not extend all the way to k50, owing to col-
lisional damping or other effects (Hanssen et al., 1992;
Robinson, Newman, and Rubenchik, 1992; DuBois et al.
1993a, 1993b, 1995a).

Figure 6(a) shows contours of G vs K for a typical
point in Region I of Fig. 3. The maximum growth rate is
at the point given by Eq. (3.7), but the unstable waves

FIG. 5. Langmuir wave-number spectrum from two-
dimensional strong turbulence pumped by a driver, labeled
‘‘D,’’ at k50.225kDx̂ (logarithmic scale, highest three de-
cades), from Robinson and Newman (1989).
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follow a thin arc of broad angular extent, along which
energy and momentum conservation are satisfied. This
arc is so thin as to be incompletely resolved in Fig. 6(a).
Note that in all frames of Fig. 6 a good approximation to
the full Green function from kinetic theory was substi-
tuted into Eq. (3.4) to obtain the numerical results
shown.

2. Modulational instability

In Region II of Fig. 3 the instability with the largest
growth rate is a modulational instability, which causes
an initially uniform plane wave to become modulated,
breaking up into wave packets with a scale ;K21

(Vedenov and Rudakov, 1964). In terms of a Hamil-
tonian such as Eq. (2.29), development of modulation
increases the magnitude of the negative uEu4 term faster
than that of the first term u¹•Eu2. The modulated wave
train thus has a lower energy than the original plane

FIG. 6. Contour plots of Gmax vs K for the density response in
Eq. (3.4). The parent wave has k along the horizontal (paral-
lel) axis. In all cases Te5100Ti , contours are spaced logarith-
mically one decade apart, the lowest contour is at 1029vp , and
the maximum G occurs at a point on the parallel axis. The
letters H and L mark highs and lows, respectively, for clarity.
(a) Region I, electrostatic decay instability for k50.3kD and
W51026; (b) Region II, modulational instability for
k50.003kD and W51026; (c) Region III, subsonic modula-
tional instability for k51024kD and W51026; (d) Region IV,
supersonic modulational instability for k51024kD and
W50.1; (e) Region V, modified decay instability for
k50.3kD and W50.1.
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wave. For historical reasons, some modulational insta-
bilities have been termed oscillating two-stream instabili-
ties (OTSI) in much of the older literature, and even in
some recent work. This terminology has proved to be
highly confusing and should be rigorously avoided.

For Ti!Te , this instability has (Zakharov et al., 1985)

Gmax'vp

W

4
, (3.8)

K~Gmax!'S W

6 D 1/2

kDk̂, (3.9)

with K(Gmax)!k and Gmax,V. The maximum growth
rate occurs parallel to k, but strong growth is also found
along a broad arc extending around to the perpendicular
direction, as seen at the bottom left of Fig. 6(b). The
dependence of Gmax and K(Gmax) on Ti /Te is only weak
(Zakharov et al., 1985).

At the quantum level, the modulational instability
corresponds to the four-wave process shown in Fig. 7, in
which two Langmuir quanta exchange an ion sound
quantum. The latter quantum can correspond either to
an ion sound wave that approximately satisfies the dis-
persion relation (2.3) or to a rapidly damped (or grow-
ing) nonresonant quasimode, i.e., a virtual quantum in
field-theoretic terms. This instability broadens the initial
Langmuir spectrum in k space, transferring quanta to
both slightly higher and slightly lower k , since K!k for
the fastest-growing perturbations.

3. Subsonic modulational instability

This instability, which dominates in Region III of Fig.
3, is very closely related to the modulational instability
considered above. However, Gmax exceeds V , so we are

FIG. 7. Quantum view of a modulational instability. Two
Langmuir quanta, L1 and L2, scatter into the states L3 and
L4 via the exchange of an ion sound quantum of momentum
K, which can correspond either to a freely propagating ion
sound wave or a strongly damped quasimode (a virtual quan-
tum).
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dealing with an ion quasimode in Fig. 7, rather than an
ion sound wave that satisfies the dispersion relation
(2.3). In this case Eqs. (3.8) and (3.9) remain valid, but
Gmax.V and K(Gmax)@k (Zakharov et al., 1985). This
instability transfers Langmuir quanta to larger k , while
increasing W in the modulated packets. Figure 6(c)
shows that the region of near-maximal growth is very
broad in this case, so the density response has a signifi-
cant component perpendicular to k. The highest growth
occurs on the parallel axis for K i'0.003kD , and the
edges of the growth region are seen to be fairly sharp.

4. Supersonic modulational instability

Once W becomes sufficiently large, as in Region IV of
Fig. 3, the phase velocity of the Langmuir perturbations
exceeds the sound velocity and the modulational insta-
bility is termed supersonic. In this regime, the density
response is weakened because ion inertia makes it hard
for the ions to ‘‘keep up’’ with the changing Langmuir
envelope as the perturbation evolves. Here (Zakharov
et al., 1985)

Gmax'vpS meW

3mi
D 1/2

, (3.10)

K~Gmax!'W1/2kDk̂, (3.11)

with K(Gmax)@k [the factor of 3 in the denominator in
Eq. (3.10) is from an unpublished calculation by I. H.
Cairns]. This instability is similar to the subsonic modu-
lational instability in that it carries energy to higher k .
The weakened density response is seen in the scaling
Gmax } W1/2, which replaces Gmax } W in the subsonic case.
Figure 6(d) shows that, as for the subsonic modulational
instability, the growth rate of this instability is large and
nearly constant over a broad region with large perpen-
dicular extent and quite sharp edges. This region satis-
fies K2lD

2 ,Wcos2u, with cosu5K̂•k̂.

5. Modified decay instability

The final instability regime discussed by Zakharov
et al. (1985) was that of the modified decay instability,
Region V of Fig. 3. The dominant instability in this re-
gion combines features of both the supersonic modula-
tional instability and the decay instability because Gmax
exceeds V and the two branches of the nonlinear disper-
sion relation overlap due to the large uncertainty in the
wave frequencies induced by the high growth rate. The
sound quantum in Figs. 4 and 6 is thus a virtual quantum
in a quasimode. It has (Nishikawa, 1968b; Zakharov
et al., 1985)

Gmax'vpS meWk2lD
2

mi
D 1/3

.V , (3.12)

K~Gmax!'2k. (3.13)

This instability carries Langmuir energy to smaller k ,
but is of little importance to us because it only occurs
when k and W are both high, whereas Langmuir col-
lapse most often begins at small k and/or W (see Secs.
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IV–VI below). We do not consider this instability fur-
ther in later sections. Figure 6(e) shows that regions of
high growth follow a broadened arc, centered on the one
shown in Fig. 6(a). The bandwidth of the broadened arc
is ;G , representing the intrinsic uncertainty in the fre-
quency of a growing mode.

B. Weak turbulence

If an ensemble of Langmuir waves has a large enough
bandwidth, phase information can become irrelevant
due to the strong tendency of the waves to decohere.
Characteristically, this occurs when the decoherence
(i.e., phase-mixing) rate is greater than the competing
nonlinear rates. In the case where the waves have ran-
dom phases, one can average over phase to obtain a
so-called weak-turbulence description of Langmuir inter-
actions in terms of wave intensities. The adjective
‘‘weak’’ refers to the fact that nonlinear rates increase
with W , so this description is restricted to weak fields for
any given bandwidth (see Sec. III.C below).

In a weak-turbulence description, we introduce an oc-
cupation number n(k), which represents the density of
quanta in k space. The total energy in the waves is ob-
tained by integrating n(k) over all k, weighted by
\v(k), the energy per quantum. The occupation num-
ber is defined in terms of the second-order correlation
function of the complex amplitude a(k) of the waves
[analogous to E in Eq. (2.9)], giving

^a~k!a~k8!* &5n~k!dD~k2k8!, (3.14)

in a D-dimensional system, given suitable normalization.
Equations for n(k) can then be derived from those for
the complex field amplitudes. Closure of the equations is
achieved by making the assumption that the fields are
Gaussian and stochastic when calculating fourth- and
higher-order correlation functions. All correlation func-
tions can then be expressed in terms of products of the
n(k) (Tystovich, 1977, 1995; Zakharov et al., 1985; Mel-
rose, 1986a). All odd-order correlation functions, except
the third-order one, are zero.

Weak-turbulence descriptions of both three- and four-
wave interactions have been reported in the literature
(Tsytovich, 1977, 1995; Zakharov et al., 1985; Melrose,
1986a; Musher et al., 1995). For our purposes, only
three-wave decay L→L81S is relevant, because modu-
lational instabilities are stabilized in the weak-
turbulence regime (DuBois and Rose, 1981; Zakharov
et al., 1985; Melrose, 1986a; see also Sec. III.C below). In
this case, we have (Melrose, 1986a)

dnL~k!

dt
522nL~k!g~k!

2E dDkL8E dDkSwLL8Sd~vL2vL82vS!

3dD~kL2kL82kS!@nL~k!nL8~kL8!

1nL~kL!nS~kS!2nL8~kL8!nS~kS!# , (3.15)
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in dimensional units, where wLL8S is a weak function of
the wave vectors of the three waves. The delta functions
in Eq. (3.15) impose energy and momentum conserva-
tion in the three-wave process. The term nL8nS has the
opposite sign to the other two nonlinear terms because
high levels of product waves tend to reverse the net in-
teraction, resulting in coalescence L81S→L , which is
implicitly included in Eq. (3.15). Equations analogous to
Eq. (3.15) also exist for nL8 and nS . Even in the
random-phase case, a decay instability can occur if nL is
large enough and nL8 and nS are not so big as to satu-
rate it. In this case G } W applies, rather than G } W1/2.

Except in the case of high ion-sound-wave occupation
numbers (a situation that requires low ion-sound-wave
damping), three-wave interactions always cause nL to
decrease, carrying energy to lower k . In the case of
strong ion-sound-wave damping, Zakharov et al. (1975)
also showed rigorously that the Langmuir energy de-
creases monotonically. Hence weakly turbulent Lang-
muir waves accumulate in a condensate at very small k
where further decays are no longer possible. This situa-
tion is seen in Fig. 5, where a central condensate peak is
visible in the wave-number spectrum. It should also be
noted that stimulated scattering of Langmuir waves off
ions can also lead to condensation of energy to lower
k and can be more important than electrostatic decay
under some circumstances. The reader is referred to the
book by Tsytovich (1995) for a detailed discussion of
stimulated scattering processes, including this one.

C. Weak versus strong turbulence

In the previous subsections, it was noted that (strong-
turbulence) phase-coherent interactions give way to
weak-turbulence phase-incoherent interactions in the
limit of large bandwidth. We now turn to two important
issues that have generated much confusion in the litera-
ture: the transition from strong to weak turbulence and
the possible coexistence of both types of turbulence in a
single system. Musher et al.’s (1995) review and the
books by Tsytovich (1977, 1995) and Vladimirov et al.
(1995) discuss these issues in detail.

1. Criteria for validity of a weak-turbulence description

The transition from phase coherence to incoherence
occurs at a characteristic bandwidth

Dv'G , (3.16)

where G is the nonlinear growth rate; i.e., where the
phase-mixing rate equals the growth rate. This transition
can be gradual (Winglee, 1983; Zakharov et al., 1985;
Melrose, 1986b, 1987a, 1987b; Kruer, 1988; Vladimirov
and Popel, 1995) or, in some cases of cyclic three-wave
interactions, sudden (Robinson and Drysdale, 1996).

For Langmuir waves with the dispersion relation (2.1),
there are two regimes,

Dv'3kDklD
2 vp , Dk!k , (3.17)

Dv'3k2lD
2 vp/2, Dk'k , (3.18)
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which we term the narrow-spectrum and broad-
spectrum regimes, respectively. Substitution of Eq.
(3.17) and the decay instability growth rate of Eq. (3.6)
into the crossover criterion (3.16) gives the requirement

W!36 min~klD!S mi

gme
D 1/2

~DklD!2512~DklD!2,

(3.19)

for a weak-turbulence description of decay to be valid
for a narrow spectral peak. The function min(klD) is
required to account for the whole of Region I in Fig. 3
by taking the minimum of its argument over this region;
it can be omitted for specific values of k , leaving just a
factor klD . The corresponding criterion for a broad
spectrum is

W!9S mi

gme
D 1/2

min~klD!35
gme

3mi
, (3.20)

where the minimum function again accounts for the
whole region. Since DklD<klD and klD!1 for weakly
damped Langmuir waves to exist, Eqs. (3.19) and (3.20)
impose very small upper bounds on W for weak-
turbulence theory to be valid. Nonetheless, experimen-
tal conditions exist in which these bounds are satisfied.

If the crossover criterion [Eq. (3.16)] is combined with
the modulational instability (or subsonic modulational
instability) growth rate given by Eq. (3.8), one finds the
following criteria for a weak-turbulence description to
apply

W!12kDklD
2 , (3.21)

W!6k2lD
2 , (3.22)

for narrow and broad spectra, respectively. However,
DuBois and Rose (1981), Zakharov et al. (1985), Popel
et al. (1994), Vladimirov and Popel (1995), and
Vladimirov et al. (1995) have showed that if these crite-
ria are satisfied, (subsonic) modulational interactions are
stable. In other words, the (subsonic) modulational in-
stability is either a phase-coherent instability or does not
exist, at least in a Maxwellian plasma. Since
k<k* /25(gme/9mi)

1/2 for these modulational instabili-
ties to dominate over decay, Eqs. (3.21) and (3.22) im-
pose very strict conditions on a weak-turbulence de-
scription and, ultimately, such a description will break
down due to accumulation of energy via a cascade, or
through narrowing of the spectrum (Zakharov, 1984;
Musher et al., 1995) unless other physical effects inter-
vene to prevent this.

For the supersonic modulational instability, Eqs.
(3.10) and (3.16) give

W!
27mi

me
~klD!2~DklD!2, (3.23)

W!
27mi

4me
~klD!4, (3.24)

for weak turbulence with narrow spectra and broad
spectra, respectively. Equations (3.23) and (3.24) are not
consistent with the right boundary of Region IV in Fig. 3
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for k.k* /2, nor with the lower boundary of the region
in the opposite case. Hence weak-turbulence theory is
irrelevant to description of the supersonic modulational
instability.

In the case of the modified decay instability, Eqs.
(3.12) and (3.16) yield

W!27
mi

me
~klD!~DklD!3, (3.25)

W!
27mi

8me
~klD!4, (3.26)

as the conditions for a weak-turbulence description to
apply to narrow and broad spectra, respectively. These
conditions can only be consistent with the bounds of
Region V in Fig. 3 for k>Dk@k* /2 and k@k* /2, re-
spectively.

2. Coexistence of weak and strong turbulence

It is possible for the criteria for a weak-turbulence
description to be satisfied for some waves in a system,
but not for others. For example, in a cascade spectrum
maintained by input of energy at high k (see Fig. 5), the
waves at high k may satisfy Eq. (3.20) if their energy
density is low enough (energy densities in the crossover
criteria above refer to the relevant part of the spectrum,
not the spectrum as a whole). At the same time, energy
accumulation in the condensate, which has Dk'k , will
eventually cause Eq. (3.22) to be violated, leading to a
phase-coherent modulational instability. Thus it is pos-
sible for weak and strong turbulence to coexist in the
same system. Such a situation was studied by Robinson,
Newman, and Rubenchik (1992), who showed that a
weak-turbulence description gave a good account of the
waves in the cascade shown in Fig. 5, while the conden-
sate waves underwent phase-coherent processes, includ-
ing wave collapse. Rubenchik and Shapiro (1991),
DuBois et al. (1991, 1993a, 1993b), Hanssen et al. (1992),
and Musher et al. (1995) have also discussed the coexist-
ence of weak and strong turbulence in various situations.

IV. OVERVIEW OF WAVE COLLAPSE AND STRONG
TURBULENCE

Sections V and VI address the phenomena of wave
collapse and strong turbulence in detail. The purpose of
this section is to give a brief overview of the phenomena
involved in wave collapse and the way in which collapse
relates to strong turbulence when many collapsing, co-
herent, nonlinear wave packets are present simulta-
neously, amid lower-level incoherent waves (the wave
packets do not satisfy the linear dispersion relation).
This provides a compact summary of the main ideas and
serves to orient the reader prior to the more detailed
discussions in Secs. V and VI. In brief, Sec. IV.A con-
siders the formation of solitons in one-dimensional sys-
tems, self-focusing, and wave collapse, Sec. IV.B dis-
cusses weak turbulence, and Sec. IV.C is concerned with
the transition between weak and strong turbulence.
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A. Wave collapse and self-focusing

As was seen in Figs. 2(a) and 2(b), intense localized
wave packets form spontaneously amid Langmuir turbu-
lence. We also saw in Sec. III that even initially uniform
wave trains can break up into localized packets due to
modulational instabilities, although only a linear stabil-
ity analysis was outlined. Figure 8 shows cross sections
through an intense Langmuir wave packet governed by
the undamped nonlinear Schrödinger equation (2.20), as
calculated by Newman et al. (1989); early stages of Za-
kharov simulations with dissipation are similar. As time
progresses, the initial wave packet narrows and becomes
more intense, i.e., it collapses. The corresponding den-
sity well also deepens and narrows as the ponderomo-
tive force becomes stronger, as shown schematically in
Fig. 9. The combined multidimensional entity, consisting
of a nonlinear collapsing wave packet and its associated
density well, has been called a soliton, a cavern, a cavi-
ton, and a collapson in the literature. However, each
term has its drawbacks: (i) The packet is not a true soli-
ton, because it is unstable and subject to short-scale dis-
sipation. Moreover, packets do not pass through each
other subject only to a phase shift (part of the standard
definition of a soliton). (ii) The terms ‘‘cavern’’ and
‘‘caviton’’ put undue emphasis on the density well and,
in the case of some magnetized plasma waves (see Sec.
IX), give the wrong impression that the density pertur-
bation is always negative. (iii) ‘‘Collapson’’ has been
used in only a few publications. For these reasons, we
stick to descriptions in terms of the nonlinear wave
packet and its associated density perturbation (or den-
sity well, if it is actually a negative perturbation).

1. One-dimensional solitons

The physics underlying the modulational instability of
a uniform wave train has been mentioned: modulations
can increase the size of the negative (self-focusing) term

FIG. 8. Profiles of electric field, taken through a three-
dimensional collapsing wave packet, calculated numerically us-
ing the nonlinear Schrödinger equation by Newman et al.
(1989). Curves are plotted at several instants during collapse,
with time increasing toward the top. The units on both axes are
arbitrary and y denotes a spatial coordinate.
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in a Hamiltonian, such as (2.29), faster than the positive
one that corresponds to dispersion. However, in the
one-dimensional case, dispersion can ultimately balance
nonlinear self-focusing to yield stable soliton solutions
of the nonlinear Schrödinger or Zakharov equations.
Such a solution of the nonlinear Schrödinger equation
(2.20) is

E~ t ,x !5E0sech@E0~x2vt !/A2#

3expiF1
2

vx2S v2

4
2

E0
2

2 D tG , (4.1)

where v is the propagation velocity of the sech envelope
(Zakharov and Shabat, 1971; Bullough and Caudrey,
1980; Kuznetsov et al., 1986; Vladimirov et al., 1995).
The contents of the first set of square brackets in Eq.
(4.1) emphasize the inverse relationship between E0 and
spatial quantities. Similarly, the exponential factor
shows that the characteristic evolution time T is of order
E0

22. We thus have two important scalings for the non-
linear Schrödinger equation,

L;E21;W21/2, (4.2)

T;E22;W21. (4.3)

These scalings can also be obtained by requiring that all
the terms in the nonlinear Schrödinger equation (2.20)
be of the same order.

It is significant to note from Eqs. (3.8) and (3.9) that
the scalings given by Eqs. (4.2) and (4.3) are obeyed by
the modulational and subsonic modulational instabili-
ties. Analyses of these instabilities implicitly assume that
the growth rates are small enough that the density fluc-
tuations adjust to be consistent with the ponderomotive

FIG. 9. Schematic of a collapsing Langmuir wave packet and
its associated density well, indicating the self-focusing and in-
tensification of the packet and the deepening and contraction
of the density well caused by the ponderomotive force.
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forces due to the developing Langmuir modulations.
This corresponds precisely to the conditions for the non-
linear Schrödinger equation to be a good approximation
to the Zakharov equations (see Sec. II.B). Hence, in one
dimension, Eq. (4.1) can be viewed as a nonlinearly
saturated state of an initial modulational instability that
has not reached the supersonic regime. More generally,
an initially uniform one-dimensional wave train of am-
plitude E will break up into ;E solitons per unit length
in accord with Eq. (4.2). This point has been verified
numerically by Shen and Nicholson (1987), for example.
Solitons are thus essential building blocks of the theory
of the one-dimensional nonlinear Schrödinger equation,
augmenting the set of plane waves, which are the build-
ing blocks of linear theory.

A very important insight into the physics of solitons is
obtained by noting that the soliton field is a linear eigen-
state of the self-consistent potential V52uEu2 within the
standard Schrödinger equation i] tE5(2¹21V)E
(cS51 here). This idea has also been widely used in
nonlinear optics (for example, by Saleh and Teich,
1991). In the case of the Zakharov equations, where
V5n , the application of this idea is (perhaps paradoxi-
cally) simpler than for the nonlinear Schrödinger equa-
tion because V is not directly dependent on E. We shall
use this insight later in studying the formation of multi-
dimensional wave packets.

In the absence of damping, the Zakharov equations
(2.17) and (2.18) have the solution (Gibbons et al., 1977;
Kuznetsov et al., 1986)

E~ t ,x !5E0sechS E0~x2vt !

@2~12v2!#1/2D
3expiF1

2
vx2S v2

4
2

E0
2

2~12v2!
D tG , (4.4)

n52
uEu2

12v2 , (4.5)

where v,1 is the soliton speed in units of the sound
velocity. Equation (4.4) reproduces Eq. (4.1) for v!1,
and Eq. (4.5) shows that the density response strength-
ens as the soliton speed approaches the sound velocity,
with a breakdown in this equation’s validity as v→1.
The appearance of this soliton depends on the ratio of
v to E0, as shown in Fig. 10. As in the case of the non-
linear Schrödinger equation, solutions to the initial-
value problem for the 1D Zakharov equations can be
decomposed into a collection of solitons plus plane
waves.

2. Multidimensional wave collapse

In more than one dimension, there are no stable soli-
ton solutions to the nonlinear Schrödinger equation or
the Zakharov equations. In the case of the nonlinear
Schrödinger equation, this can be straightforwardly
proved from a Hamiltonian perspective if damping is
neglected. Specifically, it is possible to show that the
root-mean-square size Dr of a wave packet tends to zero
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with time if the initial intensity exceeds a threshold
value (Kelley, 1965; Zakharov, 1972; Goldman and
Nicholson, 1978; Goldman et al., 1980; Kuznetsov et al.,
1986).

The first step in the Hamiltonian argument is to define
the N-weighted mean of an arbitrary quantity f by

^f~ t !&N5
1
NE f~ t ,r!uE~ t ,r!u2dDr, (4.6)

with N given by Eq. (2.30). Using the nonlinear Schrö-
dinger equation (2.20) with ĝL50 and cS51, one then
finds

] t^xj&N52Pj /N , (4.7)

] t
2~Dr !25] t

2^~r2^r&N!2&N , (4.8)

5A12~22D !^uEu2&N , (4.9)

A58S H

N
2

P2

N2D , (4.10)

where H and P are given by Eqs. (2.27) and (2.31), re-
spectively. Equation (4.9) is termed a virial theorem.

Equation (4.9) implies that Dr will decrease mono-
tonically for D>2, provided A,0; in the opposite case,
the packet will disperse. For a wave packet at rest
(P50), the latter requirement reduces to H,0, which
is achieved for characteristic fields and scales satisfying
E@L21. In such circumstances, the packet will contract
to a point in the absence of other effects such as damp-
ing. This contraction occurs in a finite amount of time, as

FIG. 10. Spatial soliton profiles vs velocity, from Eq. (4.4) with
v2!1 and ReE plotted: (a) v50; (b) v514E0.
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can be seen from the upper bound

~Dr !2<At21Bt1C , (4.11)

with B5] t(Dr)2 and C5(Dr)2 at t50. Hence the col-
lapse time tc satisfies

tc<@2B1~B214uAuC !1/2#/~2uAu!, (4.12)

with equality in Eq. (4.12) for D52. The Hamiltonian
description has been used to obtain improved estimates
of the collapse time for specific three-dimensional
packet structures by approximating the final term on the
right of Eq. (4.9) (Goldman and Nicholson, 1978; Gold-
man et al., 1980).

Arguments similar to the above can be made for
waves governed by the Zakharov equations. Although
no rigorous virial theorem exists in this case, it is argued
that the early stages of the evolution of a wave packet
are slow and can thus be approximated by the nonlinear
Schrödinger equation. Hence the nonlinear Schrödinger
virial theorem should give a good estimate of the col-
lapse threshold. This argument has been confirmed by
numerical simulations in a number of cases and it is
found that the collapse threshold obtained via the non-
linear Schrödinger equation gives a good estimate of the
corresponding threshold for waves governed by the Za-
kharov equations (Newman et al., 1990).

In multidimensional systems, it is thus found that the
fundamental Langmuir wave structures are plane waves
and collapsing wave packets, rather than the plane
waves and solitons of the one-dimensional case. We con-
sider these components further below and in Secs. V and
VI.

B. The wave-packet cycle

In a large steadily driven system many collapsing
Langmuir wave packets will be simultaneously present,
along with a background of plane waves, as in Figs. 2(a)
and 2(b). Since they are not stable, these packets will
form, collapse, dissipate, then reform, drawing energy
ultimately from the driver. This section briefly summa-
rizes the main stages in this wave-packet cycle, to which
we return in detail in Sec. V.

Localized wave packets can form via modulational in-
stability of a monochromatic plane wave, or an en-
semble of plane waves, as discussed in Sec. III. This
mechanism was confirmed by early numerical simula-
tions (Goldman and Nicholson, 1978; Nicholson and
Goldman, 1978; Nicholson et al., 1978) and can be rel-
evant in turbulence if the instability time scale is short
enough. However, the alternative nucleation mechanism
is more relevant in many turbulent systems. This mecha-
nism depends on the fact that, in the presence of density
fluctuations, localized Langmuir eigenstates exist in ad-
dition to the plane-wave ones (Doolen et al., 1985; Rus-
sell et al., 1988). These states are trapped as standing
waves in density depressions where the refractive index
is higher than average [see Eq. (2.8)]. These states are
then free to accumulate energy from the background
turbulence, via three-wave decays or directly from a
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
driver tuned to the eigenstate frequency (Doolen et al.,
1985; Russell et al., 1988; DuBois et al., 1990, 1993b;
Robinson and Newman, 1990a; DuBois and Rose, 1991;
Robinson, Wouters, and Broderick, 1996). This mecha-
nism is particularly favored because suitable density de-
pressions are left over after wave packets collapse and
dissipate. Indeed, Doolen et al. (1985) and Russell et al.
(1988) observed packets renucleating repeatedly in the
density wells generated by the ponderomotive force of
previous collapsing wave packets that had since dissi-
pated, a phenomenon some signs of which had been
seen in 1D simulations by Doolen et al. (1983). Subse-
quent statistical analysis confirmed this tendency quan-
titatively (Robinson et al., 1988). Nucleation is particu-
larly effective for shallow wells with n;2^uEu2& (see
Sec. V).

If the intensity of a nucleating state increases to the
point that the collapse threshold A50 is passed, col-
lapse will commence. After this point, the wave packet
narrows and becomes more intense (see Figs. 1 and 8).
During this collapse phase of the wave-packet cycle,
Langmuir ponderomotive forces push aside the plasma
to produce a density well that helps to confine the waves
(see Fig. 9).

Ultimately, other physical processes must cut into ar-
rest collapse and prevent a singularity from being
reached. This is usually accomplished by dissipation—
often called burnout—of a large fraction of the Lang-
muir energy at short scales (Zakharov, 1972; Zakharov,
1984; Robinson, 1991), although in principle the advent
of higher-order nonlinearities can also arrest collapse.

Once a large part of the Langmuir energy in a packet
has been dissipated, its ponderomotive force is no longer
sufficient to support the deep density well formed in the
collapse phase. In the relaxation phase, this well gradu-
ally relaxes, spreading and decreasing in magnitude until
it is shallow enough to nucleate further waves effec-
tively. At this point, a large fraction of wells renucleate
further waves to the point that the collapse threshold is
again exceeded. Robinson et al. (1988) found that
roughly 80% of collapse sites renucleate further col-
lapses, consistent with earlier work by Doolen et al.
(1985) and Russell et al. (1988). Figure 11 shows the
main stages in the wave-packet cycle schematically.

C. Strong turbulence

The main features of strong Langmuir turbulence are
evident in Figs. 2(a) and 2(b). There are two clearly dis-
tinguishable components to the turbulence: (i) localized,
coherent wave packets, which have high fields and short
scales (high wave numbers) and (ii) a background of
incoherent waves that have low fields and longer scales
(lower k); seen directly only in Fig. 2(a), this latter com-
ponent also fills the spaces between the high-E clumps
seen in Fig. 2(b). Under most circumstances, dissipation
is concentrated in the coherent component, where it oc-
curs primarily near the point of arrest of collapse. En-
ergy input can be to the incoherent waves or, from a
suitably tuned driver, directly to the localized packets.
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Energy exchange between the two components occurs
during nucleation to balance dissipation in the steady
state.

Figure 12 shows schematics of the localized and con-
densate components of strong Langmuir turbulence,
plus a third, cascade component to account for cases in
which energy enters the system at large k , then cascades

FIG. 11. The wave-packet cycle, showing nucleation, collapse,
burnout, and relaxation, with energy input during nucleation
and dissipation during burnout.

FIG. 12. Schematics of localized, condensate, and cascade
components of Langmuir turbulence, and the interactions be-
tween them in three cases of pumping: (a) driven at high k ; (b)
condensate driven directly; (c) localized states driven directly.
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down to the condensate through a series of electrostatic
decays. The main energy flows between the components,
and the processes involved are also shown in Fig. 12,
with single-headed arrows indicating dominant flow in
one direction and double-headed ones indicating a bal-
ance in the steady state. Column (a) of this figure corre-
sponds to driving at high k , followed by cascade, then
nucleation from (or, possibly, modulational instability
of) the resulting condensate. Column (b) represents the
case in which a driver at low k drives the condensate
directly. Some weak-turbulence broadening to higher k
is possible via electrostatic coalescence (L1S→L8), as
indicated by a dashed arrow, but this appears to be rela-
tively unimportant under most circumstances. Column
(c) corresponds to direct driving of localized states. In-
verse nucleation processes (e.g., coalescence between a
localized Langmuir wave and a propagating ion-sound
wave to produce a propagating Langmuir wave), and
radiation of Langmuir waves from collapsing wave pack-
ets (see Sec. V.E) transfer some energy into the low-k
condensate in this case. Note that, in some cases, driven
by a strong pump tuned well above the local plasma
frequency, the cascade is truncated before reaching
k50 (see Secs. V.C, VI.A, and VIII.F). In such cases
coupling mechanisms other than nucleation can have a
role.

Figure 13(a) shows the dispersion relation of Lang-
muir eigenstates in a turbulent plasma. At the top is the

FIG. 13. Schematics of strong turbulence in Fourier space: (a)
Langmuir dispersion relation, showing propagating modes at
v.0 and localized eigenstates at v,0. The discrete structure
seen for v,0 is smoothed out in observations if averaging
over many packets occurs. (b) Corresponding wave-number
spectrum resulting from beam-driven waves at kb , showing
the cascade (numbered peaks) and condensate components as
solid curves and the localized component dashed. Dissipation
increases rapidly for k.kdiss .
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(dimensionless) dispersion curve v5k2 for plane Lang-
muir waves (vp50 in these units). Localized eigenstates
are seen at v,0, each of which corresponds to a range
of k values, since it is not a plane wave. This range
broadens as v decreases, corresponding to a deepening
and narrowing of the confining density well. The typical
density of states also decreases, because collapse accel-
erates at short scales (indicated schematically by the in-
creasing separation between the discrete eigenvalues in
Fig. 13). Energy flows to localized eigenstates near
v50 directly or from the low-k condensate, possibly
after undergoing a cascade from high k . Collapse then
carries it to higher k where it eventually dissipates at
k'kdiss . Figure 13(b) is a schematic of the correspond-
ing wave-number spectrum for a case in which energy
enters at high k (k5kb), then cascades to low k via the
four numbered spectral peaks, corresponding to succes-
sive electrostatic decays. Eventually energy reaches the
central condensate peak, shown at k50. The dashed
curve shows the spectrum associated with localized
states. It peaks at k50, where nucleation is taking place,
then declines rapidly toward higher k , corresponding to
collapsing packets. For k*kdiss the falloff is even
steeper, as packets are arrested and dissipated at a char-
acteristic scale ;kdiss

21 . Recent numerical work by Gold-
man et al. (1996) shows evidence of structure similar to
that in Fig. 13, although the discrete structure at v,0 is
smeared out by time averaging.

Starting from a two- or three-component picture, it
has been possible to construct a simplified picture of
strong Langmuir turbulence by accounting for the dy-
namics of both components and the interaction between
them (Robinson and Newman, 1990a, 1990b, 1990c;
Robinson, 1996a). Treatment of the interaction between
the components is rendered tractable by the dominance
of nucleation under a wide variety of circumstances. The
features and predictions of this model are discussed in
detail in Sec. VI, along with their verification against
numerical simulations.

V. WAVE COLLAPSE

Since the work of Zakharov (1972), it has been known
that localized multidimensional Langmuir wave packets
can undergo wave collapse, attaining short scales and
high intensities, before dissipating. This section discusses
the main stages of the wave-packet cycle: packet forma-
tion and structure, power input to the forming packet,
the collapse threshold, collapse, arrest of collapse, and
relaxation. The insights obtained are used in the model
of strong turbulence discussed in Sec. VI and in some of
the applications in Secs. VIII and IX.

A. Wave-packet formation

Early work concentrated on modulational instability
of monochromatic plane waves as the mechanism for
producing an initial localized wave packet that would
later collapse (e.g., Papadopoulos et al., 1974; Rowland
and Papadopoulos, 1977; Rowland, 1980; Rowland et al.,
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1981). Some early numerical simulations also confirmed
the viability of this mechanism and the subsequent col-
lapse of wave packets formed at either high or low wave
numbers (Nicholson and Goldman, 1978; Nicholson
et al., 1978).

One problem with the modulational-instability route
to collapse is that, in fully developed turbulence, the
turbulent spectrum is usually so broad that it is modula-
tionally stable (Sec. III.C; Russell et al., 1988). A second
problem is that analysis of modulational instabilities
usually assumes that all Langmuir waves have the dis-
persion relation given by Eq. (2.1). In reality, in a tur-
bulent plasma, localized eigenstates exist in which Lang-
muir waves are trapped as standing waves in density
depressions (in geometric-optics terms, regions of low
density and high refractive index trap Langmuir waves
by total internal reflection). The dispersion diagram
shown in Fig. 13(a) thus contains discrete eigenfrequen-
cies as well as those given by Eq. (2.1); these discrete
states cannot be ignored.

The existence of localized Langmuir states has two
main consequences: (i) These states can accumulate en-
ergy from background turbulence via nonlinear cou-
plings. For example, the existence of such states (lower
in energy than the lowest plane-wave state) permits ad-
ditional steps in the decay cascade, whose energy is then
concentrated in the localized states (Robinson, Wouters,
and Broderick, 1996). Alternatively, an external field
tuned to a frequency just below the unperturbed plasma
frequency vp can couple directly to these states (Doolen
et al., 1985; Russell et al., 1988; DuBois et al., 1990,
1993b), with three-wave interactions transferring some
energy to plane-wave states. (ii) These states are rela-
tively long lived, evolving only on the slow time scale of
density fluctuations. Near the threshold of collapse, this
rate of change is expected to become even slower as
Langmuir ponderomotive force increasingly supports
the well against relaxation (see below). Hence modula-
tional instability of these localized states is favored rela-
tive to the plane-wave case, since the bandwidth of these
waves is small.

Doolen et al. (1985) were the first to recognize the
importance of localized states in strong Langmuir turbu-
lence. They also noted the critical point that these states,
which can nucleate energy to seed collapse, are likely to
be localized in density depressions excavated by the
ponderomotive forces of collapsing wave packets them-
selves. Once the collapsing packets dissipate, these rem-
nant density wells relax, unsupported by ponderomotive
forces, until they reach a depth and scale that can once
again efficiently nucleate energy from the source (see
Sec. V.C). This closes a loop that leads to the dominance
of nucleation under a wide variety of situations—density
wells not only favor wave collapses, but are produced by
them.

B. Wave-packet structure

The next question to which we must turn is that of the
structure of the nucleating wave packets. Numerical
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simulations show that collapsing wave packets are pre-
dominantly roughly oblate with typical axial ratios of
around 1.5:1.5:1 to 2:2:1 in three dimensions, with a
single central peak of electric-field strength (Robinson,
Newman, and Goldman, 1988; Newman, Robinson, and
Goldman, 1989, 1991; and references therein). Further-
more, collapsing packets are found to move with group
velocities that are zero, or at most a very small fraction
of the sound velocity. These features differ from those
of the one-dimensional form given by Eqs. (4.4) and
(4.5), which represents a moving packet with multiple
field maximums in general (see Fig. 10).

Although multiply peaked (often called quasiclassical)
wave packets can collapse (Zakharov et al., 1984; Za-
kharov and Kuznetsov, 1986; Kuznetsov and Turitsyn,
1990; Shapiro et al., 1995), it has recently been argued by
Robinson (1996a), Robinson, Melatos, and Rozmus
(1996a), and Robinson, Wouters, Broderick (1996), that
collapse of multiply peaked wave packets is not likely to
dominate that of singly peaked ones (see also Sec. V.D
below). Zakharov and Kuznetsov (1986) also found that
quasiclassical packets are unstable to breakup into
shorter-scale, singly peaked ones, a scenario for which
simulations of lower-hybrid waves have recently pro-
vided some support (Shapiro et al., 1995). Robinson,
Wouters, and Broderick (1996) showed that damping of
ion fluctuations suppresses the ion response to moving
packets, also making it impossible for moving packets to
collapse above a very small critical damping level and
velocities much smaller than the sound velocity. They
also showed that power input to localized states is most
effective for a singly peaked state (see Sec. V.C below).
Thus, except where noted to the contrary, attention is
henceforth restricted to singly peaked, stationary col-
lapsing wave packets.

In the nucleation scenario, most collapsing wave pack-
ets form initially in density wells remaining after the col-
lapse of a previous packet. Such wells are approximately
isotropic, having been made so during their relaxation
(see Sec. V.G below). The wells are also essentially un-
supported by ponderomotive forces during relaxation,
because their trapped Langmuir fields largely dissipated
during burnout. This means that the Langmuir fields can
be considered to be linear eigenstates of a spherically
symmetric well whose form results from linear pro-
cesses.

Under the electrostatic Zakharov equations (2.17)
and (2.18) the electric field can be represented in terms
of the potential F , with E52¹F . At fixed t , this poten-
tial can be decomposed in spherical harmonics, centered
on the center of the density well (Newman et al., 1989),
giving

F~r ,u ,f!5(
l50

`

(
m52l

l

hlm~r !Ylm~u ,f!, (5.1)

5(
l ,m

F lm~r ,u ,f!, (5.2)

where the radial functions hlm are complex, the Ylm are
standard spherical harmonics, and r , u , and f are the
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usual spherical polar coordinates. Angle-averaged par-
tial energies Wlm(r)5(4p)21* u¹F lmu2sinududf can be
defined in terms of Eq. (5.2).

The radial functions in Eq. (5.1) satisfy ]rhlm;r ulu21

for ulu>1 and small r , and ]rh0m50 at r50. Hence the
l561 components dominate in determining the field at
small r in a packet with a peak of electric field at r50
(Newman et al., 1989). It is possible to rotate coordi-
nates so that the general wave packet in Eq. (5.1) is in
standard orientation with the polarization ellipse of the
high-frequency electric field E [cf. Eq. (2.9)] in the x-y
plane and the major and minor axes of this ellipse point-
ing in the x and y directions, respectively. The dominant
terms in Eq. (5.1) can be written as

F~r ,u ,f!5E0S a00h0~r !1
a1xx1a1yy1a1zz

r
h1~r ! D ,

(5.3)

5E0S a00h0~r !1
ax1iby

r
h1~r !eidD , (5.4)

in general orientation and standard orientation, respec-
tively. Here E0 is the central-field strength, h0 and h1
are real functions that apply to the l50 and l51 com-
ponents, respectively, the alm are constants that satisfy
( lmualmu251, a and b are real constants that satisfy
ua00u21a21b251 and a2>b2, and d is a real phase con-
stant. When restricted to the x-y plane, this potential is
also the one relevant to two-dimensional wave-packet
structures.

Figure 14 shows the dominance of the l51 compo-
nents of F near the center of a representative wave
packet that formed spontaneously in numerical simula-
tions of strong Langmuir turbulence (Newman et al.,
1989). The l50 and l52 components are much smaller,
as is the zh1(r)/r part, because the packet has been
brought into standard orientation. Newman et al. (1989)

FIG. 14. Relative angle-averaged energy densities Wlm [see
the discussion following Eq. (5.2) for the precise definition] in
the various components of a spherical-harmonic decomposi-
tion of the field of a spontaneously formed wave packet from a
simulation of strong Langmuir turbulence (Newman et al.,
1989). The curves show the energy densities corresponding to
the various harmonics lm , as labeled. Note that the units of r
and Wlm are arbitrary.
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found that this dominance persists throughout collapse.
Note that the packet in Fig. 14 is approximately circu-
larly polarized near r50, consistent with the compa-
rable levels of the 1x and 1y components there. This is
contrary to the original figure in Newman et al.’s (1989)
paper, whose two frames were accidentally reversed.

The potential (5.4) has a dipole structure, giving a
central peak of uEu. Dipole potentials have long been
used to model initial wave packets in numerical studies
of Langmuir wave collapse (e.g., Degtyarev et al., 1975,
1976). For a0050 the constants a and b describe the
polarization of the high-frequency field E at the center
of the packet: (i) for a51 the packet is linearly polar-
ized along the x axis, (ii) for uau25ubu251/2 the polar-
ization is circular, with the handedness depending on the
relative signs of a and b , and (iii) in other cases the
central polarization is elliptical. Being electrostatic,
plane Langmuir waves are always longitudinally polar-
ized. Elliptical polarization arises because the localized
packet comprises two degenerate eigenstates with the
same frequency, different directions of E, and a relative
phase controlled by a and b .

Near r50, the energy density uEu2 for the potential in
Eq. (5.4) with a0050 is given by (Newman et al., 1991)

W5
h1

2

r2 1S a2x21b2y2

r2 D F S dh1

dr D 2

2
h2

r2 G . (5.5)

One consequence of this result is that the three-
dimensional energy density cannot be spherically sym-
metric, even where the state is trapped within a spheri-
cally symmetric density depression. If W has a quadratic
maximum at r50, nearby surfaces of constant W are
ellipsoids with principal axes in the x , y , and z directions
having lengths in the ratio (Newman et al., 1989, 1991)

1:S 31R

113R D 1/2

:S 31R

11R D 1/2

, (5.6)

with 0<R5b2/a2<1. These axes cannot all be equal in
three dimensions. In two dimensions only the first ratio
in Eq. (5.6) is relevant and is unity only for R51; i.e.,
for circular polarization.

The preponderance of pancake-shaped wave packets
(i.e., packets in which the surfaces of constant W are
roughly oblate spheroids near r50) seen in simulations
of turbulence, such as in Fig. 2, can be explained in
terms of the potential (5.3) with a0050; other terms do
not affect the shape near r50, where the field is strong.
If the nucleating density wells have no preferred direc-
tions, individually or statistically, the three coefficients
a1m will be identically and independently distributed,
subject to (m51

3 ua1mu251. This corresponds to the com-
plex vector a5(a1x ,a1y ,a1z) being uniformly distrib-
uted on the surface of a six-dimensional unit sphere (the
real and imaginary parts of the three coefficients a1m
correspond to the six axes). The resulting probability
distribution of R , denoted P(R), is (Newman et al.,
1989)

P~R !5
12R

~11R !3 KF S 12R

11R D 2G , (5.7)
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where K is the complete elliptic integral of the first kind
(Abramowitz and Stegun, 1970, p. 569). This distribution
strongly favors small values of R , with
^R&54G212p2/4'0.196, where G'0.9156 is Cata-
lan’s constant (Abramowitz and Stegun, 1970, p. 807).
For R5^R&, the packet is triaxial, with principal axes in
the approximate ratio 1:1.4:1.6. In the limiting cases
R50 and R51 the packet is oblate and prolate, respec-
tively, with corresponding axial ratios of 1:A3:A3 and
1:1:A2. The strong bias toward small R means that a
linearly polarized packet, with R50, is a good approxi-
mation for many purposes.

The above arguments explain the observed statistical
preponderance of approximately oblate wave packets
without resort to dynamic mechanisms by which packets
might flatten during collapse. Such effects had previ-
ously been thought to be necessary and their plausibility
was established via analysis of scalar-field Zakharov
equations (Pelletier, 1987) where such flattening indeed
occurs. However, vector wave packets do not appear to
flatten further during collapse (Degtyarev et al., 1976;
Robinson et al., 1988; Robinson and Newman, 1990a)
and the present mechanism is adequate to account for
the observed shape distribution. (A further argument is
actually required, to the effect that the collapse thresh-
old is nearly polarization independent; it is summarized
in Sec. V.D.)

Two-dimensional systems are relevant, for example,
to self-focusing of laser beams in the two directions
transverse to their propagation. In such systems circu-
larly symmetric wave packets are possible for R51, but
the probability distribution (Newman et al., 1991)

P~R !5
12R

R1/2~11R !2 (5.8)

favors anisotropic profiles even more strongly than Eq.
(5.7), with ^R&5p23 corresponding to an axial ratio of
approximately 1:1.5. The maximum axial ratio in this
case is 1:A3, which occurs for R50.

Newman et al. (1991) showed that the functions

h0~r !5
a2

a21r2 , (5.9)

h1~r !5
ar

a21r2 (5.10)

are eigenfunctions of the Zakharov equation (2.17) with
ĝL50 for almost identical three-dimensional density
wells of characteristic width a , as shown in Fig. 15.
These functions are thus very close to being simulta-
neous eigenfunctions of the same well and hence are
suitable model eigenfunctions for studying properties of
localized wave packets. The central density depressions
corresponding to Eqs. (5.9) and (5.10) are
n0(0)5220/a2 and n1(0)5(4log2222)/a2'219.2/a2,
only a 4% discrepancy. Hence the well corresponding to
h0

n0~r !52
4~5a22r2!

~a21r2!2 , (5.11)
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is a reasonable approximation to the density well that
corresponds to both eigenfunctions. In physical units

dNe

Ne
5

3lD
2

a2 n . (5.12)

Note that the Lorentzian factors (a21r2)21 in Eqs. (5.9)
and (5.10) could be replaced by Gaussian ones, for ex-
ample, while preserving the main features of the field
structure.

Before leaving the question of wave-packet structure,
a few words about the role of the constant a00 are war-
ranted. This constant enters the angular momentum
density in Eq. (2.32) through the term iE3E* . Newman
et al. (1991) showed that iE3E* can have a dipole or
ringlike structure, depending on the relative values of
a , b , and a00 in Eq. (5.4). Figure 16 shows three ex-
amples: in frame (a) one has a0050 and the field
iE3E* has a dipole form; in frame (c), where a00 is

FIG. 15. Density wells for which h0(r) (l50) and h1(r)
(l51) are eigenfunctions in three dimensions (Newman et al.,
1991).

FIG. 16. Vector plots of iE3E* for the model potential given
in Eq. (5.4) with (a) b/a50.6, a00 /a50; (b) b/a50.5,
a00 /a50.510.5i ; (c) b/a50, a00 /a50.5i (Newman et al.,
1991).
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purely imaginary, it forms a ring, while case (b), where
a00 is complex, is intermediate between these two limits.

There is substantial numerical evidence that only a
single eigenstate is relevant to nucleation and that this
state is the one with a single central peak of uEu, rather
than a more complicated structure. Robinson, Wouters,
and Broderick (1996) investigated this problem, calcu-
lating the approximate eigenfrequency of a state j
trapped in a D-dimensional well of a given depth and
length scale a . They found

v j2vp

vp
'

DNe

2Ne
1

3p2m2

2

lD
2

a2 , (5.13)

in dimensional units, where vp is the unperturbed
plasma frequency, DNe is the characteristic depth of the
well, and m2 is the sum of the squares of the quantum
numbers mi along D orthogonal axes, with
mi51,2, . . . , giving m2>D . The requirement v j&vp
for the state to be localized then implies

D<m2&
1

3p2UDNe

Ne
U a2

lD
2 . (5.14)

Conservation of mass during relaxation of an unsup-
ported density well (see Sec. V.G) can then be used to
relate the quantities in Eq. (5.14) to those at the arrest
scale af , giving

D<m2&
1

3p2UDNf

Ne
U af

2

lD
2 S af

a D D22

, (5.15)

where DNf is the density perturbation at arrest (Robin-
son, Wouters, and Broderick, 1996). Because DNf<Ne
and the nucleation scale of the packet must be greater
than its arrest scale af'20lD (see Sec. V.F), this rela-
tionship implies D<m2&12 and, hence, 1<mi<3. For
an isotropic situation with equal values of mi for all i ,
one finds 1<mi<2. Robinson, Wouters, and Broderick
(1996) took this argument further, incorporating the ef-
fects of well relaxation and the estimated nucleation
scale (see Sec. VI.A) to obtain the bound

D<m2&2 (5.16)

at nucleation. This implies that m2 is minimal at the
point of renucleation; i.e., the state has the fewest pos-
sible nodes and is the ground state of the well.

C. Power input to packets

Wave packets in slowly relaxing density wells can ac-
cumulate energy directly from a driver or via nonlinear
interactions with propagating waves. Such energy accu-
mulation can be studied by adding source terms ¹•SE
and ¹2Sn to the right sides of the Zakharov equations
(2.17) and (2.18), respectively (DuBois and Rose, 1991).
The first of these sources,

SE5nECe2ivCt, (5.17)

takes into account a spatially uniform pump field EC
oscillating at a frequency vC . Such a pump is called a
‘‘clamp’’ field if its amplitude is fixed. It can either be
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added to the auxiliary k50 component of the first Za-
kharov equation [see the discussion following Eq. (2.10)]
or it can replace it, the latter being the more common
procedure in the clamp-drive literature to date. The sec-
ond source,

Sn5E•EC* eivCt1E* •ECe2ivCt1naj~x ,t !, (5.18)

incorporates beats between the packet field and a clamp
driver in the ponderomotive force, as well as stochastic
driving by other processes [the final term in Eq. (5.18)],
to account for ambient density fluctuations that are un-
related to Langmuir waves. In principle, these sources
can also account for particle noise associated with the
damping terms ĝL and ĝS (DuBois and Rose, 1991).
Note that the stochastic term naj(x ,t) is defined to have
zero mean and a variance na

2 , averaged over space, time,
or both; subject to these conditions, spatial and temporal
correlations of this term may exist.

The Langmuir field can be expanded in terms of in-
stantaneous vector eigenstates um& of the source-free
Zakharov equation (2.17) in the unperturbed density
profile n , where we use standard Dirac bracket notation
(Schiff, 1968)

E5(
m

amum&exp~2ivmt !, (5.19)

where the coefficients am vary slowly in time and vm is
the eigenfrequency of the state um& . Zakharov and Shur
(1981), Doolen et al. (1985), DuBois et al. (1988, 1990),
Newman et al. (1989), Robinson and Newman (1991b),
Robinson (1996a), and Robinson, Wouters, and Broder-
ick (1996) have all argued that the trapped state is domi-
nated by a single eigenfunction, which is the ground
state. More generally, the sum in Eq. (5.19) can be split
into a sum over localized eigenstates and a sum over
freely propagating states, which can be approximated as
plane waves.

During nucleation, E can be considered to evolve
within a linearly determined density well n in the ab-
sence of damping, which is only significant near the end
of collapse (see Sec. V.F). If the source (5.17) is added
to Eq. (2.17) in this regime and the expansion (5.19) is
made, one finds (Doolen et al., 1985; DuBois et al., 1988,
1991; DuBois and Rose, 1991; Robinson and Newman,
1991b; Robinson, Wouters, and Broderick, 1996)

i
daj

dt
5(

m
^judnum&ei~v j2vm!t1^junuC&ei~v j2vC!t,

(5.20)

where uC& corresponds to EC , dn;na is the part of n
due to stochastic driving, and products of source terms
have been neglected. In general, terms involving deriva-
tives of the states um& and their eigenfrequencies should
also appear on the right of Eq. (5.20). However, as we
shall see shortly, nucleation is most effective when the
packet is near the threshold for collapse and these de-
rivatives are zero. Equation (5.20) can be expanded as a
perturbation series, as in standard quantum-mechanical
time-dependent perturbation theory (Schiff, 1968), and
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the resulting equations can then be integrated succes-
sively to obtain aj to arbitrary order in the expansion.

In the lowest nontrivial order of the perturbation ex-
pansion, the two terms on the right of Eq. (5.20) repre-
sent two different mechanisms by which energy can be
transferred to a nucleating state uj&:

(i) The first term in Eq. (5.20) represents scattering of
energy from continuum states with vm.0, off density
fluctuations imposed by the stochastic source in Eq.
(5.18), into the state uj&. This is analogous to the electro-
static decay of a plane Langmuir wave L into a product
Langmuir wave L8 and an ion sound wave S ,
L→L81S (see Secs. III.A and III.B). However, in the
present case, the state L8 is a localized Langmuir state.
When this term dominates in Eq. (5.20), Fermi’s Golden
Rule (Schiff, 1968) implies that the energy-transfer rate
peaks for v j5vm2vq , where q labels a set of eigen-
functions into which dn is decomposed (e.g., plane
waves). Since vm.0 for plane waves and vq is small
compared to the plasma frequency vp , the strongest
coupling occurs for states with small uv ju. The overlap
integrals (S-matrix elements, in quantum terminology)
in Eq. (5.20) are also likely to be dominated by states
m whose wavelength is of the same order as the length
scale of the localized state j . Essentially, the localized
states enable the decay cascade to be extended relative
to the plane-wave case, with energy cascading into
eigenstates with v j,0 [see Fig. 13(a)]. The term
^judnum& also contains an implicit dot product between
the vector parts of the states ^ju and um&. Hence the
strongest coupling is to continuum states with polariza-
tions similar to that of the localized state. However, the
field of the localized state is not unidirectional, so there
is some coupling to all continuum-state polarizations.
The longest characteristic period available for nucle-
ation occurs approximately at the point at which the
lowest-lying eigenstate is about to detrap due to relax-
ation of the well.

(ii) The second term in Eq. (5.20) represents direct
coupling from the source to the localized state. The
strongest coupling occurs where v j5vC (DuBois et al.,
1988, 1990; DuBois and Rose, 1991). For effective cou-
pling to occur, the source must thus be tuned near or
below the plasma frequency. Again, the strongest cou-
pling occurs when the driver polarization is similar to
that of the state uj&.

For both the background-turbulence source and the
direct-drive source above, the strongest coupling to a
nucleating state involves frequencies (of the background
waves or clamp, respectively) that are close to the fre-
quency of the trapped state. In the case of energy input
from background turbulence, nucleation will be ineffec-
tive unless the trapped eigenfrequency is close to the
unperturbed plasma frequency vp (the lowest frequency
of propagating waves). If the energy enters the back-
ground turbulence at high frequencies, it will undergo a
cascade to lower k before it can couple effectively to
nucleating states. A similar cascade must also occur if a
clamp drive is applied with a frequency well above vp
(DuBois et al., 1990, 1993a, 1993b; Hanssen et al., 1992).
Reasonable criteria for the occurrence of a cascade are
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that (i) k.k* /2, as in Fig. 3 and (ii) the decay instability
rate exceeds that of the modulational instability of the
trapped waves (Hanssen et al. 1992; DuBois et al., 1993a,
1993b). The latter criterion is discussed further in Sec.
VI.A, where it is noted that if (ii) is not satisfied the
cascade can be truncated before reaching k50.

D. Collapse thresholds

Once a nucleating wave packet has accumulated suf-
ficient energy, it will begin to collapse. A necessary con-
dition for wave collapse is that the Hamiltonian be un-
bounded from below as the packet contracts, thereby
making collapse to a singularity an energetically allowed
process (Zakharov, 1972, 1984; Kuznetsov et al., 1986).
A sufficient condition for collapse of packets governed
by the nonlinear Schrödinger equation is A,0, where
A is given by Eq. (4.10), as discussed in Sec. IV.A.

In the vicinity of the collapse threshold, ponderomo-
tive forces due to the localized packet are close to the
value needed to support the density well and prevent it
from relaxing. Hence, in this phase, the packet is very
slowly evolving and the nonlinear Schrödinger equation
can be expected to provide a reasonable approximation.
Hence it is argued that the criterion A50 should give a
reasonable estimate of the collapse threshold. This has
been verified for stationary wave packets using particle-
in-cell simulations (Newman et al., 1990). Indeed, these
simulations showed that the condition A50 is actually a
better estimate of the threshold than the condition that
the full Hamiltonian of the Zakharov equations be zero.
Collapse is actually possible for H slightly larger than
zero in the Zakharov case (Zakharov, 1984; Kuznetsov
et al., 1986; Newman et al., 1990).

The collapse threshold for the field given by Eqs. (5.4)
and (5.10) with a0050 was calculated by Newman et al.
(1990). Robinson, Wouters, and Broderick (1996) gener-
alized their results to arbitrary polarizations using an
ansatz field of the form

F~r!5E0~ax1iby !e2r2/a2
, (5.21)

which has the same characteristic features. Robinson,
Wouters, and Broderick (1996) found that three-
dimensional collapse of this field occurs when the quan-
tity a2E0

2 exceeds a threshold Q given by

Q~a!5
1792A2

205260a2~12a2!
, (5.22)

for cS51. The quantity Q is dimensionless and, in terms
of dimensional units, is the threshold value of the quan-
tity Wa2/lD

2 above which collapse occurs, where W is
given by Eq. (2.21). This form of the threshold implies
that there is no energy threshold for 3D collapse, be-
cause the characteristic energy is proportional to Wa3

} Qa in this case. However, once damping is incorpo-
rated, a must be greater than the arrest scale, which
imposes an effective minimum initial energy for col-
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lapse. In Sec. VI we also note that, for collapse amid
turbulence, W must exceed the mean turbulent energy
density.

The a dependence of the threshold in Eq. (5.22) is
weak, with only an 8% difference between the highest
(a251/2) and lowest (a51) thresholds. This implies
that the polarization of the wave packets does not
strongly affect the threshold and hence that the distribu-
tion of polarizations of collapsing packets is nearly the
same as that of nucleating packets, at least at the start of
collapse. Newman et al. (1989, 1991) found that the po-
larization does not change substantially during collapse.
These points complete the argument of Sec. V.B that
leads to the predicted shape distribution of collapsing
wave packets.

The collapse threshold is somewhat higher for packets
with Lorentzian profiles than for Gaussian ones, because
more of the energy is in the low-field tail, thereby en-
hancing the u¹•Eu2 term relative to the uEu4 term in the
Hamiltonian (2.29). Newman et al. (1990) calculated
Q'50 for a 2D linearly polarized Lorentzian dipole
field with cS51 and a51. They found that this estimate
was in good accord with the numerically determined col-
lapse threshold for a single wave packet governed by the
Zakharov equations and for an equivalent packet simu-
lated by particle-in-cell methods. Robinson and New-
man (1990a, 1990c) estimated the collapse threshold
from the rate of energy dissipation in strong turbulence.
In the limit of low mean Langmuir energy density, their
results imply Q'150 in two dimensions and Q'260 in
three dimensions, both for cS

251.6. These values are
likely to be higher than the true minimum threshold be-
cause they include cases in which packets exceed the
threshold by a factor of order unity.

Robinson, Wouters, and Broderick (1996) estimated
the collapse threshold from the requirement that the
ground state of a nucleating well have v j50. From Eq.
(5.13), with m25D , this yields

Q'3p2DcS
2 , (5.23)

which exhibits the dependence of Q on cS . Equation
(5.23) is in semiquantitative agreement with the 2D and
3D numerical results cited above and also corresponds
semiquantitatively to the condition H50, since \v j is an
energy eigenvalue for a Langmuir quantum with Hamil-
tonian H . It is important to note that the characteristic
value of Q is several tens, rather than order unity, as
would be found from naive balancing of dispersion and
self-focusing terms in the Hamiltonian (2.29).

E. Collapse

Once the collapse threshold is exceeded, the virial
theorem (4.9) implies that the root-mean-square size of
the packet decreases monotonically in systems of dimen-
sionality D>2; i.e., the packet collapses and decouples
from the driver as the density well deepens and the
packet eigenfrequency decreases as a result. Zakharov
(1972) showed that the potential of the collapsing field
approaches the self-similar form
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F~ t ,r!5
eiv jtct

td F̃ S r
txD , (5.24)

t512t/tc , (5.25)

where the collapse is assumed to start at t50, tc is the
time at which a singularity would be reached in the ab-
sence of any additional physics, F̃ has a constant func-
tional form, and d and x are constants. This form is
termed self-similar because temporal evolution is em-
bodied in the change of scale and amplitude, within a
constant functional form F̃ . The length scale a of the
field decreases as tx, while the characteristic electric-
field strength increases as t2d2x. Collapse thus corre-
sponds to the nonlinear stage of a modulational instabil-
ity of localized (rather than plane) waves. The form of
Eq. (5.24) only applies for the so-called inertial range
between the nucleation and dissipation scales, where the
packet undergoes free collapse, without appreciable
driving or damping.

A number of different regimes of self-similar wave
collapse exist. The first subdivision is into cases of weak
and strong collapse. In weak collapse, energy is not con-
served during collapse, with uEu2aD;t2m and

m52d1~22D !x,0, (5.26)

implying that Langmuir waves are radiated from the
packet. In strong collapse, the inequality in Eq. (5.26)
becomes an equality. Kuznetsov and S̆korić (1988a,
1988b) showed that radiation from a collapsing packet
can speed collapse by increasing the ratio uHu/N , imply-
ing that weak-collapse scalings dominate over strong
ones even when self-similarity is not imposed from the
start. Their work dealt with magnetized-plasma waves in
the adiabatic limit, but this result carries over to the
unmagnetized case.

The second subdivision of collapse regimes depends
on which terms dominate in Eqs. (2.17) and (2.18). In
the subsonic case collapse is adiabatic and the time de-
rivatives can be neglected in Eq. (2.18). Ignoring damp-
ing and requiring that the terms in Eq. (2.17) all be of
the same order then yields v j}n}2uEu2,

d50, x51/2. (5.27)

Subsonic collapse is strong for D52 and weak for
D53. In the supersonic case, the temporal derivatives in
Eq. (2.18) dominate over the spatial derivatives, and ion
inertia is so great that the density cannot keep pace with
the changing ponderomotive force of the collapsing
fields. In this case ]2n/]t2;¹2uEu2 holds. If we require
in addition that energy be conserved, we find in three
dimensions

d51/3, x52/3, (5.28)

and

N5
1

t4/3 Ñ S r
txD , (5.29)

where the function Ñ gives the self-similar density pro-
file. Supersonic collapse of this type is always strong, by
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construction. Any crossover from subsonic to supersonic
collapse occurs when the time derivative in Eq. (2.18)
exceeds the spatial one; i.e., where ȧ'vS in dimensional
units. If the collapse is not arrested first (see Sec. V.F),
this crossover point will always be reached, because ȧ
} t21/2 for self-similar subsonic collapse. The character-
istic dimensionless crossover condition a/tc51 implies
W;me /mi after conversion back to dimensional units.
This criterion is also the one that defines the boundary
between subsonic and supersonic plane-wave instabili-
ties (see Fig. 3). An improved estimate, applicable to
collapse amid background turbulence, is discussed in
Sec. VI.C.

The existence of wave collapse has been verified nu-
merically by many authors, and several have verified
specific self-similar forms. Figure 8 shows a series of
field profiles taken through a collapsing solution of Eq.
(2.20) in the absence of damping. Figure 17 shows the
same profiles plotted using variables rescaled according
to the subsonic scalings given by Eq. (5.27). The curves
in Fig. 8 collapse very nearly into a single curve in Fig.
17, demonstrating the subsonic scaling of the wave col-
lapse. In simulations of the Zakharov equations Degt-
yarev et al. (1976) and Budneva et al. (1975) found rea-
sonable agreement of simulations with the supersonic
collapse scalings in Eqs. (5.28) and (5.29) at high wave
intensities. However, it appears that the crossover point
is substantially higher than W5me /mi . For example,
Robinson and Newman (1990a) also showed that the
statistical properties of strong turbulence are consistent
with Eq. (5.27) rather than Eq. (5.28), at least for
W!1, rather than W!me /mi (see Sec. VI for more de-
tails).

F. Arrest of collapse

The self-similar solution (5.24) implies the formation
of a field singularity at t5tc (t50). In reality, effects
neglected in the dissipation-free Zakharov equations

FIG. 17. Profiles through a collapsing wave packet, as in Fig. 8,
but rescaled according to the subsonic scalings of Eq. (5.27);
uEu/uEmaxu is plotted against yuEumax , where y is a spatial coor-
dinate.
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must intervene to prevent such an unphysical occur-
rence. Mechanisms that could, in principle, arrest wave
collapse include linear Landau damping given by
Eq. (2.2), transit-time damping due to enhanced interac-
tions between electrons and localized coherent waves
(Morales and Lee, 1974; Valeo and Kruer, 1974; DeNeef
and DeGroot, 1977; Rozanov and Shumski�, 1986, 1987;
Robinson, 1989, 1991; Melatos and Robinson, 1993a,
1993b, 1995), wave breaking (Dawson, 1959; Kruer,
1988), onset of higher-order nonlinearities (S̆korić and
ter Haar, 1980; Malkin, 1986; Newman et al., 1990), or
breakdown of quasineutrality due to ion inertia (New-
man et al., 1990). Of these, recent work strongly favors
the mechanism of transit-time damping, which we dis-
cuss next, before briefly addressing why the other alter-
natives appear less favorable.

1. Arrest by transit-time damping

For damping to arrest collapse, wave-packet fields
must be dissipated as fast as they build up due to col-
lapse. Zakharov and Shur (1981) and Russell et al.
(1986) have showed that linear damping must increase
at least as fast as kD/2 at large k to arrest collapse in a
D-dimensional system. This requirement is not satisfied
by the Landau damping operator (2.2), so random-phase
linear damping of Langmuir waves in a thermal plasma
cannot halt collapse unless it does so at small k where
Eq. (2.2) is steeply increasing. The presence of a high
level of superthermal electrons may change this conclu-
sion by increasing the high-k damping, as may improved
calculation of the thermal Landau damping operator,
since Eq. (2.2) is only valid for (klD)2!1. However,
high levels of superthermal electrons will increase
transit-time interactions even more.

The damping operator (2.2) applies to interactions be-
tween plane waves and a thermal plasma. If, however,
the waves are coherent and localized, it is possible to
lose energy to particles much more rapidly via transit-
time damping. Transit-time interactions occur when par-
ticles cross a localized, coherent, oscillating field in a
time comparable to, or shorter than, the period of oscil-
lation. To first order, very fast particles see a dc field
during their passage and exchange an amount of energy
of order quEua , where q is their charge. For an isotropic
distribution of particles, positive and negative contribu-
tions cancel exactly to this order. However, to order
uEu2, the net energy exchange is nonzero.

Robinson (1991) calculated the local power exchange
between a particle of initial velocity v0 and a field

E~ t ,r!5E~r!cos~vpt1f!, (5.30)

where f is a phase constant and E(r) is an arbitrary
spatial profile. He used a perturbation expansion in
which the trajectory of the particle is expanded about
the unperturbed one in powers of the perturbing field,
and the phase f is averaged over to account for random
arrival times of individual particles. For a unidirectional
Gaussian field E(r)5E0e2r2/a2

, and after integration
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over a Maxwellian distribution, this yielded a mean rate
of power dissipation per unit volume P(0) given by

geff5
P~0 !

1
2 e0E0

2
5

pvp

DG~D/2!2D/2 zD/2e2z~z1D21 !,

(5.31)

at the center of the wave packet in Eq. (5.30), where
dimensional units have been used, z5a/(lDA2), D is
the dimensionality, and G denotes a gamma function.
The notation geff indicates that this quantity is the effec-
tive damping rate for the central energy density.

The effective growth rate of the central energy density
W(t ,0)5uE(t ,0)u2 in a collapsing wave packet is

Geff5
1

uE~ t ,0!u2

d

dt
uE~ t ,0!u25

2~d1x!

vptc
S ai

a D 1/x

, (5.32)

where ai is the initial scale of the packet. Robinson and
Newman (1990a) found d5x51/2 during the bulk of
collapse and vptc'(ai /lD)2 (see Sec. VI.C). These re-
sults yield

Geff'vplD /a2. (5.33)

Combining Eqs. (5.31) and (5.32) yields the evolution
equation

d

dz
W~ t ,0!52

4z

vp
@Geff~z !2geff~z !#W~ t ,0!, (5.34)

which can be integrated by steepest descents to give

W~0,t !
W~0,0!

'
zi

2

z2 expF2
4zgeff~z !

vp
G , (5.35)

where W(0,0) is the initial central field and zi the initial
scale parameter. Figure 18 shows that W(0,t) increases
at an accelerating rate early in collapse, peaks sharply at
a value of order unity, then falls rapidly during burnout,
just as was seen in simulations that use the Zakharov
equations or particle-in-cell methods (e.g., D’yachenko
et al., 1988; Zakharov, Pushkarev, Rubenchik, Sagdeev,

FIG. 18. Central energy density vs time during collapse, calcu-
lated from the transit-time damping expression [Eq. (5.35)] for
the wave packet in Eq. (5.30) with a Gaussian profile in three
dimensions (Robinson, 1991).
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and Shvets, 1988, 1989; Zakharov, Pushkarev, Sagdeev,
Solov’ev, Shapiro, Shvets, and Shevchenko, 1989;
Newman et al., 1990).

Two essentially equivalent estimates of the arrest
scale can be made from Eq. (5.35). First, the condition
Geff5geff gives af513.6lD and 15.0lD for D52 and
D53, respectively. At this point, approximately 30–
40% of the energy has been dissipated, in excellent
agreement with the results of two-dimensional particle-
in-cell simulations. Second, the point at which the expo-
nent in Eq. (5.35) is 21 (i.e., where the central energy
density has been reduced by a factor of e relative to the
free-collapse value) occurs at 11.8lD and 13.2lD , re-
spectively.

The arrest scales obtained from Eq. (5.35) are only
weakly dependent on the collapse exponents d and x
because of the exponential dependence in Eq. (5.31).
What is more significant is that the arrest scales in three
dimensions are greater than those in two. This result had
been seen in particle-in-cell simulations (D’yachenko
et al., 1988; Zakharov, Pushkarev, Rubenchik, Sagdeev,
and Shvets, 1988, 1989; Zakharov, Pushkarev, Sagdeev,
Solov’ev, Shapiro, Shvets, and Shevchenko, 1988) prior
to Robinson’s (1991) work, but had been considered
paradoxical because nonlinear self-focusing becomes
stronger as D increases. Hence, it was reasoned, col-
lapse should proceed to shorter scales before arrest. The
theory of transit-time damping makes it clear that the
contrary trend occurs because the fraction of high-
velocity particles in a 3D distribution is higher than that
in a 2D distribution and hence transit-time damping is
stronger.

Robinson (1991) also calculated the arrest scales for
the packet derived from the dipole potential (5.4), with
Eq. (5.10), a0050 and a51, which is a more realistic
representation of the potential of a collapsing packet.
He obtained

W~0,t !
W~0,0!

'
zi

2

z2 expS 2
2w2geff~w !

vp
D , (5.36)

geff~w !5S 2p

3 D 1/2 pvp

DG~D/2!2D/2 w ~D11 !/2

3~w22w1D21 !e23w/2, (5.37)

w5~a/lD!2/3. (5.38)

These expressions yield estimates af523lD and
af526lD in two and three dimensions, respectively,
based on the point at which the central energy density
has decreased by a factor of e . Corresponding peak val-
ues of W are achieved at 32lD and 35lD , respectively.

The above estimates of arrest scales are reasonably
consistent with the value of (11–15)lD found in two-
dimensional particle-in-cell simulations and the range
(17–30)lD inferred from three-dimensional experiments
and particle-in-cell simulations (Janssen, Bonnie, Gran-
neman, Krementsov, and Hopman, 1984; Janssen, Gran-
neman, and Hopman, 1984; Wong and Cheung, 1984;
Levron et al., 1987; D’yachenko et al., 1988; Zakharov,
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Pushkarev, Rubenchik, Sagdeev, and Shvets, 1988, 1989;
Zakharov, Pushkarev, Sagdeev, Solov’ev, Shapiro, Sh-
vets, and Shevchenko, 1989; Newman et al., 1990; Rob-
inson and Newman, 1990c; see Sec. VIII for details of
the experiments). It should be stressed that the length
scale is much bigger than would be crudely estimated
from the characteristic cut-in point of transit-time inter-
actions, Ve'avp , which gives af'lD .

The peak values of W(0,t) predicted by Robinson
(1991) were 0.2–1, depending on the packet structure.
These values are in good agreement with numerical re-
sults from Zakharov equation and particle-in-cell (PIC)
simulations after allowing for the higher values of
W(0,0) used in PIC simulations for computational trac-
tability (Newman et al., 1990; Robinson, 1991).

Further evidence for arrest of collapse by means of
transit-time damping was found in PIC simulations car-
ried out by Zakharov, Pushkarev, Rubenchik, Sagdeev,
and Shvets (1989) and Newman et al. (1990). Near ar-
rest, coherent phase-space ‘‘jets’’ of fast particles were
observed to be emitted from the collapsing packet.
These jets are consistent with transit-time acceleration
peaking when the field reaches its maximum each
plasma period. They are not consistent with ordinary,
random-phase Landau damping.

The sudden dissipation of Langmuir energy near ar-
rest heats the plasma locally, leading to an increase in
lD5Ve /vp and a corresponding rise in the arrest scale
by tens of percent for Wf'1 (Zakharov, Pushkarev,
Rubenchik, Sagdeev, and Shvets, 1989; Newman et al.,
1990; Robinson, 1991). It does not, however, change the
main conclusions above.

2. Particle scattering by transit-time interactions

In many contexts the scattering of fast electrons in-
volved in transit-time interactions is of greater interest
than arrest itself. These electrons acquire an energy

W5qE dtv~ t !•E~ t ,r!, (5.39)

during their passage through the localized field given by
Eq. (5.30) (Morales and Lee, 1974; Valeo and Kruer,
1974; DeNeef and DeGroot, 1977; Rozanov and Shum-
ski�, 1986, 1987; Robinson, 1989). Expansion of the po-
sition and velocity about their unperturbed values in
powers of the electric-field strength yields a first-order
energy exchange W(1). This is given by (Robinson, 1989;
Melatos and Robinson, 1993a)

W ~1 !5qRe@eifv̂~0 !
•Ẽ ~k0!#5q v̂~0 !

•Ẽ ~k0!cosf ,
(5.40)

5Ẽ ~k0!E dleiklE d3k8

~2p!3 eik8•r~0 !~ l !E~k8!, (5.41)

where E(k) is the standard Fourier transform of E, l is
the distance along the unperturbed trajectory from the
point of closest approach to r50, v(0) is the unperturbed
velocity, k05vp /v(0), the hat denotes a unit vector, and
the second equality in Eq. (5.40) holds only if Ẽ (k0) is
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real. In these terms, the unperturbed trajectory is
r(0)5b01 v̂(0)l , where b0 is the impact parameter at
which r(0) is minimal.

The first-order interaction in Eq. (5.40) scatters par-
ticles in energy, but does not lead to any net energy
transfer when averaged over the phase f (which corre-
sponds to averaging over random arrival times of the
particles at the packet). The second-order energy ex-
change is nonzero, even when averaged over f , because
particles that are accelerated gain energy at a different
rate from those that are decelerated. The second-order
phase-averaged transfer is (Robinson, 1989; Melatos and
Robinson, 1993a, 1993b)

L5
q2

4m~v ~0 !!2 F Ẽ j~k0!Ẽ j* ~k0!

2
d

dk0
ImS v̂s

~0 !Ẽ j* ~k0!
]Ẽ s

]xj
~k0! D G , (5.42)

where there are implicit sums over j ,s51,2,3. Figure 19
shows Eqs. (5.40) and (5.42), evaluated in one dimen-
sion for the field of Eq. (5.30) with a Gaussian profile.
This shows that transit-time damping cuts in strongly for
a&5v/vp .

An alternative treatment of transit-time interactions
in terms of coherent Landau damping theory was given
by Bingham et al. (1994) and Tsytovich (1995), implicitly
taking into account local modifications to the particle
distribution due to the field. The results are very similar
to the above, and the predicted arrest scale is only

FIG. 19. First-order and mean second-order energy transfers
vs velocity for the wave packet in Eq. (5.30) with a Gaussian
profile in one dimension: (a) W(1); (b) ^W(2)&.
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slightly changed, so we do not discuss this approach
here. DuBois et al. (1995a) have also considered local
modifications to the damping operators.

3. Alternative arrest mechanisms

If Langmuir waves are intense enough, they can give
even an initially stationary particle a high enough oscil-
lating (or ‘‘quiver’’) velocity that it can interact reso-
nantly with the field (Kruer, 1988). The wave-breaking
amplitude at which this occurs is given by
qE/mvp'vp /k (Dawson, 1959; Kruer, 1988). If we es-
timate k'1/a we find the condition

W*a2/lD
2 (5.43)

for wave breaking to be important. Thus, since transit-
time damping halts collapse at W&1 and a*15lD ,
wave breaking is not expected to be relevant to wave
collapse. The condition (5.43) is essentially equivalent to
Eq. (2.22), since k;a21 (Mounaix et al., 1991).

Another suggested mechanism for halting collapse is
the onset of higher-order nonlinearities not included in
the Zakharov equations. These include second-
harmonic responses arising from beats at 2vp , non-
quasineutral effects occurring when ions lag behind elec-
trons due to rapid evolution of the collapsing field, and
other corrections of order uEu4 in Eqs. (2.17) and (2.18)
(Vladimirov et al., 1995). It is known that these nonlin-
earities do not contribute in the one-dimensional case,
due to cancellations between the relevant terms (Khaki-
mov and Tsytovich, 1976; Kuznetsov, 1976; S̆korić and
ter Haar, 1980; Malkin, 1986; Newman et al., 1990;
Vladimirov et al., 1995). Newman et al. (1990) found
that the predominantly one-dimensional character of the
field near the center of a collapsing wave packet also
gives rise to a near cancellation of these terms, with the
result that higher-order nonlinearities are certainly not
relevant for W&1. Mounaix et al. (1991) found that
there were further cancellations even in the multidimen-
sional case, leading to Eq. (5.43) as the relevant criterion
for the validity of the Zakharov equations in the absence
of dissipation.

The ion response in Eq. (2.18) can give rise to un-
physical negative densities if W is large enough. New-
man et al. (1990) modified the ion response to prevent
the development of such features, but found that this did
not dramatically affect the evolution of the Langmuir
waves in the high-W regime and certainly did not halt
collapse. They found that the main source of discrepan-
cies between the Zakharov equations and particle-in-cell
simulations was localized heating due to dissipation dur-
ing burnout (see above).

G. Relaxation and renucleation

The bulk of the Langmuir energy in a collapsing
packet dissipates very near the time of arrest. As a re-
sult, the associated density well is no longer supported
by the Langmuir ponderomotive force and it begins to
dissipate and relax, essentially linearly. Ultimately, it re-
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FIG. 20. Evolution of a scalar-field wave packet and associated density depression vs time, adapted from DuBois et al. (1988): (a)
E2 (solid) and n (dashed); (b) lowest eigenvalue; (c) squared amplitude uh0u2 (solid) and effective radius d (dashed) of the ground
state.
laxes back to the point where a trapped Langmuir eigen-
state can again couple effectively to the driver and/or
background turbulence and nucleate more energy. Such
occurrences of renucleation have been found to account
for the formation of most Langmuir wave packets that
subsequently collapse provided the ion-sound-wave
damping given by Eq. (2.6) is not too small (Doolen
et al., 1985; Russell et al., 1988; Robinson et al., 1988). If
the ion-sound-wave damping is very small, the relaxing
well can simply propagate away as a pulse of radiated
ion sound waves (Russell et al., 1988), in which case
nucleation is either irrelevant or occurs in randomly
formed density wells related to the random ‘‘hot spots’’
that initiate two-dimensional laser self-focusing into fila-
ments in laser plasmas (Rose and DuBois, 1993a,
1993b). In most applications to date, however, the ion-
sound-wave damping is strong enough that renucleation
is the dominant mechanism of formation of localized co-
herent packets.

DuBois et al. (1988, 1990) and DuBois and Rose
(1991) have studied the wave-packet cycle of nucleation,
collapse, arrest and burnout, relaxation, and renucle-
ation, using a scalar, spherically symmetric version of
the Zakharov equations. The details are not the same as
for the full vector equations, but the main features of the
wave-packet cycle are as described above. Figure 20(a)
shows the evolution of the central energy density
W(0,t) and density n(0,t) vs time. At first, the density
well is relaxing after a previous burnout and W is very
small. Figure 20(b) shows that, during this time, the
eigenfrequency of the lowest state rises steadily toward
zero. Once the waves couple efficiently to the driver,
W rises (in this case a clamp drive tuned to a small nega-
tive frequency was used). At the same point n levels off
due to the increasing ponderomotive force that results.
Around t50.18 the collapse threshold is passed, n be-
gins to decrease again, and the eigenfrequency again
moves down as collapse proceeds. A short way into col-
lapse, the packet effectively decouples from the driver
due to frequency detuning (see Sec. V.C). Subsequently,
free collapse ensues, with W and n increasing rapidly in
magnitude until the point of arrest at t'0.22. Figure
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20(c) shows the decrease in the packet size and the in-
crease in the amplitude of the localized ground state
during collapse. After arrest, the energy density then
drops precipitously during burnout, leaving an unsup-
ported density well. The cycle then recommences (not
shown).

VI. STRONG TURBULENCE

Section V concentrated on the physics of a single col-
lapsing wave packet. In turbulent systems, such as those
shown in Fig. 2, many such localized coherent packets
are present, coexisting with propagating waves. The two
types of waves are coupled via nonlinear interactions in
the nucleation phase of the wave-packet cycle. In addi-
tion, the pump is coupled to one of the classes of waves,
while dissipation is dominated by burnout of wave pack-
ets at arrest. This motivates a treatment in which the
turbulence is treated as a two- or three-component sys-
tem (see Sec. IV.C and Fig. 12) with the components
linked via the decay cascade and/or nucleation. In this
section it is shown that, once the rate of energy input
from the driver and rate of dissipation from the coherent
component are calculated, imposition of global power
balance permits the steady-state scalings of many mean
properties of the plasma to be calculated as functions of
the driver strength or mean Langmuir energy density.
Wave-collapse theory then yields statistical distributions
and spectra of the fields. It should be noted that this
few-component approach is not derived from a more
fundamental statistical theory; however, as demon-
strated below, it has shown excellent agreement with the
results of numerical simulations.

Before discussing recent work on two- and three-
component models of strong Langmuir turbulence, it is
worth briefly considering earlier work along these lines.
The earliest analyses of this type were one-dimensional
studies of the undamped, undriven nonlinear Schrö-
dinger equation using the inverse scattering transform
(Zakharov and Shabat, 1971). These showed that an ar-
bitrary initial state would evolve into a uniquely defined
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sum of localized solitons and radiated plane waves—a
neat two-component division. A similar picture of solu-
tions of the undamped, undriven, 1D Zakharov equa-
tions was developed in the 1970s (Gibbons et al., 1977;
Thornhill and ter Haar, 1978). Pictures based on a
driven, dissipative ‘‘soliton gas’’ in one or more dimen-
sions were also developed around the same time or sub-
sequently (Kingsep et al., 1973; Galeev et al., 1975,
1977a, 1977b; Degtyarev et al., 1980; Pelletier, 1982; Sha-
piro and Shevchenko, 1984). However, the role of nucle-
ation was not recognized in these analyses, and they usu-
ally assumed that all the energy initially in a collapsing
wave packet is ultimately dissipated (strong collapse).
An exception to the latter point was Zakharov’s (1984)
analysis, which allowed for the possibility of weak col-
lapse in some regimes.

An alternative approach to the study of strong Lang-
muir turbulence has been via statistical closure methods
based on the direct interaction approximation, first de-
veloped by Kraichnan (1959, 1964) for fluid turbulence.
Despite significant progress, renormalization approaches
have faced formidable difficulties for reasons such as the
intermittent nature of Langmuir collapse (Pelletier,
1980a, 1980b; DuBois and Rose, 1981).

A. Power input and dissipation

Figures 12 and 13 show schematics of the energy flows
in strong turbulence in block and spectral form, respec-
tively. The first step in analyzing the statistical proper-
ties of turbulence is to calculate the rates at which power
enters the system from the driver and the rate at which it
is dissipated due to burnout.

1. Power input

The rate of power input depends on the type of driver.
Here we consider two specific types.

A beam instability gives rise to wave growth at a rate
G(kb) at a wave number denoted kb (in general, G will
be positive over some small range of wave numbers
Dkb centered on kb). The rate of power input is then

P in52G~kb!W~kb!uDkbu, (6.1)

where uDkbu is the volume occupied by the driven modes
in k space. Two possibilities then present themselves:
either the beam couples directly to the condensate near
k50 or the beam-driven waves decay via the electro-
static decay cascade. In the former case, there is no sig-
nificant cascade component and W(kb) } ^W&, since the
instability drives the condensate as a whole (Robinson
and Newman, 1990a; Robinson, 1996a). In this case

P in}G~kb!^W&. (6.2)

When kb.k* /2 [see Eq. (3.5)], a decay cascade occurs,
unless the driver is so strong, and Dkb so small, that a
direct modulational instability of the driven waves can
occur under the criteria discussed in Sec. III.C, thereby
truncating the cascade before it reaches k50. In the cas-
cade case, one has [see the discussion following Eq.
(3.15)]
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Gdecay}W~kb!. (6.3)

In the steady state G(kb)5Gdecay . Hence, in this case,

P in52G~kb!2uDkbu, (6.4)

since the number of modes involved is proportional to
uDkbu. If the driver is nearly monochromatic, coherent
decay may occur, with Eq. (3.6) yielding

P in}G~kb!3uDkbu. (6.5)

Note that, in the work presented here, we do not con-
sider beam modifications to the dispersion of the Lang-
muir waves.

Beam driving is not the only possibility. In many
laser-plasma and ionospheric-modification experiments,
Langmuir waves are driven by a fixed-amplitude
‘‘clamp’’ field EC , as in Eqs. (5.17) and (5.18). In this
case, if the driver is strong enough and its frequency is
well above the plasma frequency, a parametric decay
cascade can occur. In most relevant laser-plasma and
ionospheric-modification experiments, the coherent de-
cay rate in Eq. (3.6) is the relevant one, yielding

P in}G~kC!3}W~kC!3/2, (6.6)

where kC is the wave number of a freely propagating
wave with v5vC . For smaller values of the clamp
strength and/or frequency, direct nucleation of wave
packets can occur, with (DuBois et al., 1990)

P in}EC
3 . (6.7)

The cascade regime in Eq. (6.5), with kb replaced by
kC , applies for a dimensionless clamp frequency

vC.Vcrit5max@3/4,2EC
2 ~2EC

2 11 !# , (6.8)

which defines Vcrit (Hanssen et al., 1992). The first term
on the right is the kinematic limit of the decay cascade
where the wave number kC resonant with the clamp sat-
isfies kC5k* /2, while the second defines the regime in
which the decay instability has a higher growth rate than
the modulational instability. If the first criterion is ful-
filled, but not the second, the waves can undergo direct
modulational instability without first cascading to form a
condensate.

2. Power dissipation

In the absence of significant damping at low k (see
Robinson, Newman, and Rubenchik, 1992), power dissi-
pation is dominated by the burnout phase at the end of
collapse. The power dissipated is thus (Zakharov, 1984;
Robinson and Newman, 1990a; Robinson, 1996a)

Pout5NPU/T , (6.9)

where NP is the number density of collapse sites, U is
the energy dissipated at the end of collapse, and T is the
characteristic time between collapses at a particular site.

The number density of collapse sites can be estimated
from the characteristic length scales at the start of col-
lapse, which is assumed here to begin in the subsonic
regime. For direct modulational instability and collapse
from near-monochromatic Langmuir waves of energy
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density W , Eqs. (3.9) and (3.11) give NP } WD/2. In the
case of nucleation, the characteristic separation between
packets ^W&21/2 also determines the characteristic nucle-
ation scale because energetic considerations favor close-
packed wave packets with initial energy densities
Wi'^W& (Robinson and Newman, 1990a; Robinson,
1996a; Robinson, Wouters, and Broderick, 1996).
Briefly, the argument is that collapse is favored for small
Wi because n;2Wi at the collapse threshold and nucle-
ation is most effective for small n (see Sec. V.C). How-
ever, Wi cannot be less than ^W& or regions outside the
nucleating wells would be favored to collapse. Typically,
the central value of Wi is of order 5^W& (Robinson and
Newman, 1990a; Robinson, Wouters, and Broderick,
1996), with a typical value one scale length a from the
center being '^W&. This argument yields

NP}^W&D/2. (6.10)

By assuming that nucleating wave packets are close
packed, Robinson, Wouters, and Broderick (1996) esti-
mated their number density in D dimensions to be

NP'
^W&D/2

~2pcS
2lD!DDD/2 , (6.11)

where the factor 2p was obtained by requiring consis-
tency with the results of Shen and Nicholson (1987) for
the spacing between solitons in one dimension. The
close-packed assumption was shown to minimize the col-
lapse threshold, leading to a mean interpacket separa-
tion a little greater than 2a , which compares well with
the value of '3a obtained from numerical simulations
by Robinson and Newman (1990a). It should be stressed
that close packing does not contradict some experimen-
tal reports of a high-field ‘‘filling factor’’ of 1–10 percent;
this factor refers to fields well above the rms value.

The scalings of Eq. (5.27) imply that the characteristic
time of subsonic collapse is

T}^W&21, (6.12)

since W;^W& at threshold. Even if the collapse eventu-
ally becomes supersonic, the subsonic phase occupies
most of the overall duration. Robinson (1996a) also
showed that the collapse time dominates over the relax-
ation time, thus determining the overall interval be-
tween collapses at a given site (i.e., the characteristic
period of the wave-packet cycle).

The energy dissipated at the end of collapse is (Rob-
inson and Newman, 1990a)

U'Wfaf
DNekBTe}Qaf

D22lD
2 NekBTe , (6.13)

which is constant. Subsonic collapse has been assumed
in Eq. (6.13), and the steep rise in transit-time dissipa-
tion with decreasing a means af is at most weakly de-
pendent on Wi [see Eqs. (5.31) and (5.37)]. In two di-
mensions, collapse is strong and the energy dissipated is
proportional to the initial energy in the collapsing
packet. However, in three dimensions, subsonic collapse
is weak and most of the energy is radiated during col-
lapse, with only a fraction } ^W&1/2 being dissipated. If a
transition to strong supersonic collapse occurs at some
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scale at , the independence of ^W& in Eq. (6.13) is un-
changed (Robinson and Newman, 1990a).

Substitution of Eqs. (6.10), (6.12), and (6.13), into Eq.
(6.9), with W replaced by ^W& in Eq. (6.10), yields

Pout}^W&11D/2. (6.14)

This result should be contrasted with the case in which
strong collapse is assumed, seeded by modulational in-
stability or nucleation. In that case, Pout } ^W&2 is pre-
dicted, independent of D . Studies of systems of different
dimensionality are thus essential to distinguish between
the two theories.

DuBois et al. (1990) argued that, in the case of a
clamp drive that couples directly to nucleating states,
Pout is modified to the form

Pout}^W&3/2, (6.15)

in three dimensions. It should be noted that DuBois
et al.’s (1990) numerical simulations did not fully verify
this and other scalings for clamp-driven turbulence [see
Eqs. (6.33)–(6.36) below] and more work is needed in
this area.

B. Scalings of averaged quantities

The evolution of the mean energy density obeys the
equation

d^W&
dt

5P in2Pout . (6.16)

In the steady state, P in is transferred to the system,
reaching the collapsing packets either directly or via the
cascade and/or condensate component(s), as shown in
Figs. 12 and 13. It is then dissipated during burnout. By
applying power balance P in5Pout in Eq. (6.16), one can
calculate the mean levels of various quantities in steady-
state turbulence. Alternatively, if P in50, the decay of
undriven turbulence can be studied.

In this section attention is chiefly focused on the case
in which the driver is of the instability type given in Eq.
(6.2), coupled directly to the condensate with no inter-
mediate cascade. Energy thus enters the condensate, is
transferred to localized packets during nucleation, and is
dissipated at burnout. This case has been the most ex-
tensively studied statistically to date, with detailed sta-
tistical properties derived and verified numerically by
Robinson and Newman (1990a, 1990b, 1990c) and Rob-
inson (1996a) in both two and three dimensions.

1. Langmuir energy density

In the steady state, Eqs. (6.2) and (6.14) imply

^W&}G2/D (6.17)

(Robinson and Newman, 1990a). Likewise, for P in50
one finds (Robinson and Newman, 1990a)

^W&}~ t2t0!22/D, (6.18)

where t0 is a constant.
Robinson and Newman (1990a) investigated the scal-

ings predicted above using 2D and 3D simulations of the
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TABLE I. Scalings in strong turbulence driven by a small-k instability. Predicted scalings A } BC vs
numerical results in two and three dimensions, with subsonic scalings assumed during collapse (after
Robinson and Newman, 1990a, 1990b). Notes: (1) steady state; (2) decay; (3) depends on high-k
damping; (4) extra factor of ln(Wf /^W&) in two dimensions; (5) a correction has been made to Rob-
inson and Newman’s (1990b) 2D result, based on the work of Robinson (1996a).

A B C (pred.) C a C b Notes

^W& G 2/D 1.01560.025 0.66460.009 1
^W& t2t0 22/D 20.9960.04 20.7160.10 2
Pout ^W& (21D)/2 2.0160.04 2.4160.20 1
U ^W& 0 0.0660.05 0.0260.07 1
NP ^W& D/2 0.9560.09 1.6060.28 1
T ^W& 21 21.0060.18 20.860.5 1
af ^W& '0 20.0660.014 0.01860.025 1,3
^n2& ^W& 2 1.960.1 1.9160.09 1,4,5

aTwo-dimensional, numerical.
bThree-dimensional, numerical.
Zakharov equations with strong damping at high k to
mimic the effects of transit-time dissipation. The form of
the driver used was

G~k!5G~kb!expS 2
~kx2kb!2

2Dk i
2 2

ky
21kz

2

2Dk'
2 D , (6.19)

where kb is assumed to be parallel to the x axis, without
loss of generality, kz is omitted in 2D cases, and Dk i and
Dk' are widths of the driver in the parallel (i.e., x) and
perpendicular directions, respectively. This form can be
used to approximate a beam driver, where kb5vp /vb
for resonance with a beam of velocity vb .

Using Dk i5Dk'5Dk , kb50, and cS
251.6, Robinson

and Newman (1990a) found the results shown in the first
7 lines of Table I. The exponents are all consistent with
the theoretical predictions above in both two and three
dimensions. Figures 21(a) and 21(b) show results corre-
sponding to the steady state and decay scalings of Eqs.
(6.17) and (6.18), respectively.

In dimensional units, best fits to Robinson and New-
man’s (1990a) numerical results using the theoretical ex-
ponents are (Robinson and Newman, 1990c)

^W&'300
G~0 !

vp
S Dk

kD
D 0.57

, (6.20)

Pout'0.02^W&2NkBTevp , (6.21)

U'160NkBTelD
2 , (6.22)

NP'231023^W&lD
22 , (6.23)

T'20^W&21vp
21 , (6.24)

in two dimensions. Note that there is as yet no theoreti-
cal explanation of the exponent 0.57 in Eq. (6.20) or in
Eq. (6.25) below, for the case kb'0; unlike the case of
large kb , wave-wave couplings in the condensate modify
the exponent substantially from the value of 1 that
would apply in the large-kb case. The values of U and
NP in Eqs. (6.22) and (6.23) are in semiquantitative
agreement with the approximate theoretical results of
Eqs. (5.23), (6.11), and (6.13).
., Vol. 69, No. 2, April 1997
In three dimensions, best fits to the simulation results
are

^W&'14S G~0 !

vp
D 2/3S Dk

kD
D 0.57

, (6.25)

Pout'0.2^W&5/2NkBTevp , (6.26)

U'93104NkBTelD
3 , (6.27)

NP'131024^W&3/2lD
23 , (6.28)

T'40^W&21vp
21 . (6.29)

Again, the values of U and NP in Eqs. (6.27) and (6.28)
are in semiquantitative agreement with theory.

2. Density fluctuations

Empirically, the mean-square level of density fluctua-
tions in strong turbulence is dominated by contributions
from density wells produced during wave collapse. It can
be calculated by averaging n2 over a wave-packet cycle,
then multiplying by the number density of collapse sites
NP . Robinson and Newman (1990b) and Robinson
(1996a) showed that this average is dominated by the
collapse phase. Hence, if the subsonic scaling n }2u Eu2

is used and the volume of the collapsing packet aD is
allowed for, one finds (Robinson and Newman, 1990b;
Robinson, 1996a)

^n2&}^W&2f~^W&!, (6.30)

with f(^W&)51 for D53 and f(^W&)5ln(Wf /^W&) for
D52, where Wf is the peak energy density at arrest.
Here, variations in the arrest scale af with ^W& have
been ignored.

Robinson and Newman (1990b) studied the steady-
state scalings of ^n2& using the same system as in the
previous subsection. They found the scalings shown in
the last line of Table I, in approximate agreement with
theory. Figure 22 shows ^n2& vs ^W& in three dimensions
(Robinson and Newman, 1990b). The agreement with
theory was improved if the weak variation of af with
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^W& was incorporated; however, since this variation de-
pends on the form of the high-k damping, we do not
consider it here. The best dimensional fits to Robinson
and Newman’s (1990b) results, with the theoretical ex-
ponents, are

^~dNe!2&'0.3^W&2ln~Wf /^W&!Ne
2 (6.31)

in two dimensions for Wf'0.3 and

^~dNe!2&'0.4^W&2Ne
2 (6.32)

in three dimensions.

3. Beam-driven turbulence

The case of turbulence driven by a beam instability
with kb.k* /2 has been studied numerically by Weath-
erall et al. (1983) and Robinson and Newman (1989,
1990a). Their results in two dimensions confirmed the
theoretical scaling ^W& } G(kb)Dk , obtained from Eqs.
(6.4) and (6.14) in the steady state (Robinson and New-
man, 1990a), but 3D simulations of this regime have not
been performed.

FIG. 21. Average energy density from simulations of strong
turbulence (Robinson and Newman, 1990a): (a) steady-state
^W& vs G(0) from a three-dimensional system driven with
kb50; (b) the decay of ^W& with time in a two-dimensional
system in the absence of driving. The steplike features repre-
sent rapid loss of energy during burnouts of individual wave
packets.
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
4. Clamp-driven turbulence

DuBois et al. (1990) studied the nucleation cycle for a
scalar-field 3D model of turbulence in which nucleating
packets couple directly to a clamp driver of the form
introduced in Eqs. (5.17) and (5.18). They found the re-
sults contained in Eqs. (6.7) and (6.15) for P in and Pout
in the case in which the density wells survive long
enough to renucleate further collapses. These results
yielded scalings approximately of the form

^W&}EC
2 , (6.33)

Pout}EC
3 }^W&3/2, (6.34)

NP}EC
3 }^W&3/2, (6.35)

T}EC
21}^W&21/2, (6.36)

in three dimensions. The scaling of the nucleation time
T is different from the case of pumping via a plasma
instability and results in corresponding modifications to
the scalings of Pout and ^W&. In numerical simulations of
the scalar Zakharov equations, DuBois et al. (1990)
found reasonable agreement with Eqs. (6.35) and (6.36),
but their contradictory result Pout } EC

2 and a lack of
power-law behavior in some regimes implies that more
work is needed in this area. In particular, verification
against simulations of vector-field turbulence would be
desirable.

C. Probability distribution of electric-field strengths and
density fluctuations

In a few-component model, knowledge of the tempo-
ral evolution of collapsing packets can be used to calcu-
late the statistical distributions of large Langmuir field
strengths and density fluctuations. At low values of uEu
and n , the corresponding quantities can be calculated
from linear wave theory. In this section, we deal for sim-
plicity with the case of turbulence driven by a plasma
instability near kb50 to eliminate the need to consider a
decay-cascade component.

1. Electric-field strengths

In two-component turbulence, fields well below
^W&1/2 in magnitude are primarily due to incoherent

FIG. 22. Scaling of ^n2& with ^W& in simulations of steady-
state, three-dimensional Langmuir turbulence (Robinson and
Newman, 1990b).
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TABLE II. Scalings in steady-state strong turbulence driven by a small-k instability. Predicted sub-
sonic scalings A } BC vs numerical results in two and three dimensions (after Robinson and Newman,
1990a). Notes: (1) low E ; (2) inertial range; (3) high-k tail.

A B C (pred.) C a C b Notes

P(E) E 2D21 2.8560.24 5.060.5 1
P(E) E 2(D12) 23.8960.11 25.1260.18 2
P(n) n 2(D13)/2 22.4860.11 2(2.61) 2,3
W(k) ^W& (21D)/2 2.0460.14 2.3960.17 3
W(k) k 22D 24.160.3 . . . 2
un(k)u2 ^W& (21D)/2 2.0460.14 2.4160.11 3
un(k)u2 k 222D 21.8660.19 2(4.160.3) 2,3

aTwo-dimensional, numerical.
bThree-dimensional, numerical.
waves, while higher fields are chiefly found within col-
lapsing wave packets. A useful diagnostic of such turbu-
lence is the probability distribution P(E), with E5uEu.
For E!^W&1/2, P(E) can be found by noting that in
isotropic turbulence, the real and imaginary parts of the
D components of E are identically distributed. If each
component has a distribution that peaks at zero field,
one immediately finds (Robinson and Newman, 1990a)

P~E !}E2D21. (6.37)

For E@^W&1/2, P(E) is obtained by averaging over col-
lapse, with appropriate weightings for the size of the
wave packet @;aD;(tc2t)xD], and the time it spends at
each characteristic central field strength (;udt/dE0u).
This gives (Robinson and Newman, 1990a; Robinson,
1996a)

P~E !}E
0

tc
P~E ,t !dt , (6.38)

}E
0

`

v22g~v !aDU dt

dE0
Udv , (6.39)

where E0 is the central field, v5E/E0(t), and g(v) is a
function that depends on the self-similar profile of the
packet. The factor v22 in Eq. (6.39) arises from the
change of variable from t to v , and the bounds have
been extended to 0 and ` in Eq. (6.39), which is a rea-
sonable approximation in the inertial range
^W&!W!1 where the packet collapses freely. The scal-
ings in Eqs. (5.24) and (5.27) then give

P~E !}E2~D12 !, (6.40)

for subsonic collapse. At the very highest fields, at and
above the arrest level, P(E) is chiefly determined by the
statistical distribution of energies U [cf. Eq. (6.13)],
which does not have a unique value for packets collaps-
ing amid turbulence. The central limit theorem implies
that this distribution will be approximately Gaussian,
with

P~E !}exp~2E2/2Ef0
2 !, (6.41)

e0Ef0
2

2NekBTe
'

2QlD
2

af
2 '

Q

200
;1 (6.42)
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(Robinson and Newman, 1990c). Note that the distribu-
tion of U only manifests itself in the inertial range as a
scatter about the mean behavior, without changing the
scalings derived above.

Robinson and Newman (1990a) found P(E) from
Zakharov-equation simulations of strong turbulence
driven at k50, as described in Sec. VI.B. They found
the results shown in the first two lines of Table II, con-
sistent with Eqs. (6.37) and (6.40) for subsonic collapse.
Note that their results ruled out supersonic collapse in
three dimensions, at least for W&1, because the numeri-
cally determined exponent was inconsistent with the su-
personic analog of Eq. (6.40). At the highest E their
results were also consistent with Eq. (6.41), although the
statistics were not well determined. Figure 23 shows
P(E) vs E for a series of 2D simulations with varying
G(0). In each case, the distribution peaks close to
^W&1/2 and takes on its asymptotic forms (linear seg-
ments in this figure) within a factor of ;2 above or be-
low this point. This implies that the low- and high-E
components are fairly sharply separated, as assumed in
the analytic model. It also implies that the initial energy
density in a collapsing packet satisfies Wi&4^W&, con-

FIG. 23. Electric-field distributions from two-dimensional
simulations of strong Langmuir turbulence (Robinson and
Newman, 1990a). Values of the growth rate G(0) are, from left
to right, 531025vp , 1024vp , 231024vp , 531024vp , and
1023vp .
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sistent with the discussion in Sec. VI.A.
The scalings derived above can be used to obtain an

estimate of the crossover point from subsonic to super-
sonic collapse. The scaling in Eq. (6.24), with T'tc , im-
plies vptc'100/Wi in two dimensions. Using the defini-
tion Q5Wiai

2/lD
2 , with Q'150, we find vptc'ai

2/lD
2 .

Hence a'@vp(tc2t)#1/2lD in the subsonic regime. If we
assume that the crossover to supersonic collapse occurs
where uda/dtu5vS , we then find a'(mi/4me)1/2lD
'20lD and W'4Qme /mi'0.2–0.5 at the crossover.
The corresponding calculation in three dimensions
yields the same result. These results imply that crossover
does not occur until W and a are near their values at
arrest, i.e., well above the simple estimate of
W'me /mi .

2. Density fluctuations

Averaging of the volume-weighted (negative) density
response over collapse gives a scaling in the inertial
range of

P~n !}~2n !2~D13 !/2, (6.43)

for subsonic collapse (Robinson and Newman, 1990b).
The third line in Table II shows that Robinson and New-
man’s (1990b) numerical results were consistent with
this prediction, although they were not conclusive in
three dimensions.

D. Wave-number spectra of Langmuir waves and density
fluctuations: instability-driven case

In this section, the power spectra of electric fields and
density fluctuations are calculated in the inertial range
for cases in which there is no cascade. Above and below
the inertial range of k , the spectra depend sensitively on
the precise forms of the collapsing packets and the inco-
herent turbulence, respectively. When cascade is impor-
tant, the spectrum of this component must also be
added.

1. Electric-field spectra

The Langmuir power spectrum W(k)5^uE(k)u2& of
an ensemble of collapsing wave packets is obtained by
averaging the instantaneous power spectrum of the self-
similar solution [Eq. (5.24)] over collapse:

W~k !5
1
tc
E

0

tc
NaDWi~ka/ai!dt . (6.44)

Here, Wi is the initial spectrum of a collapsing packet,
rescaled to allow for self-similar contraction during col-
lapse, and N is the total number of quanta given in Eq.
(2.30). More precisely, Wi is the mean initial spectrum
of the ensemble of collapsing packets. The factor NaD

allows for changes in the energy content in the packet
during collapse and the spreading of the packet energy
over an increasing k-space volume. This yields (Robin-
son and Newman, 1990a)
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W~k !}k22DE
kaf

kai
u2D21Wi~u/l i! (6.45)

}^W&11D/2k22D (6.46)

for subsonic collapse, where the bounds in Eq. (6.45)
have been extended to 0 and ` in obtaining Eq. (6.46), a
reasonable approximation in the inertial range
1/ai!k!1/af . The prediction of Eq. (6.46) contradicts
some earlier theoretical scalings, but is confirmed by nu-
merical results (see below).

At the highest k , the spectrum is determined by the
form of the shortest-scale, highest-field packets at the
point of arrest, the rate per unit volume R at which col-
lapsing packets form (}Pout in the case considered
here), and the damping rate. The steady-state dissipa-
tion spectrum is given by

Pout~k !}RWf~k !, (6.47)

where Wf is the spectrum of a packet at the arrest scale.
Fourier-transforming the ‘‘standard’’ packet, given by
Eqs. (5.4) and (5.10) with a0050, then yields

W~k !}^W&11D/2exp~22kaf!/gL~k !. (6.48)

Robinson and Newman’s (1990a) numerical results
for the scalings of W(k) and Pout(k) were consistent
with Eqs. (6.46)–(6.48), as shown in Table II and Fig. 24.
In particular, Figs. 24(b) and 24(c) show the exponential
dependence of the dissipation spectrum and the power-
law behavior of W(k) in the inertial range, respectively.
Fits of the exponent in Eq. (6.48) to numerical results

FIG. 24. Langmuir spectra and dissipation spectra from two-
dimensional simulations of strong Langmuir turbulence (Rob-
inson and Newman, 1990a). The driving instability growth
rates are, from bottom to top, 1024vp , 231024vp ,
531024vp , and 1023vp . (a) spectrum W(k) vs k ; (b) dissipa-
tion spectrum 2g(k)W(k), showing the exponential tail pre-
dicted by Eqs. (6.47) and (6.48); (c) spectrum W(k) vs k (log-
log scale), showing the inertial range as a straight segment at
intermediate k in each case.
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were used by Robinson and Newman (1990a) to deter-
mine the mean arrest scale af in their simulations.

2. Density-fluctuation spectra

Power spectra of density fluctuations can be obtained
by procedures similar to those for Langmuir spectra.
This yields (Robinson and Newman, 1990b; Robinson,
1996a)

un~k !u2}^W&11D/2k222D (6.49)

in the inertial range for subsonic collapse. Table II
shows that this result was confirmed by Robinson and
Newman’s (1990b) numerical simulations.

E. Spectra of Langmuir waves and density fluctuations:
clamp-driven case

This section reviews recent work on the structure of
spectra in the case of strong turbulence driven by clamp-
type drivers, which are important in ionospheric-
modification and laser-plasma experiments (DuBois
et al., 1990; DuBois et al., 1991; DuBois and Rose, 1991;
Hanssen et al., 1992; DuBois et al., 1993a, 1993b).

1. Wave-number spectra

The criterion vC,Vcrit [see Eq. (6.8)] for the preva-
lence of nucleation has been explored by Hanssen et al.
(1992) and DuBois et al. (1993a, 1993b) using simula-
tions of the Zakharov equations with a clamp driver.
Figure 25(b) shows an electric-field spectrum for a case
with vC,Vcrit in Eq. (6.8), showing a broad low-k con-
densate, but no evidence of the decay peaks seen in the
corresponding weak-turbulence spectrum of Fig. 25(a).
Figure 25(c) shows the corresponding density spectrum,

FIG. 25. Spectra from clamp-driven turbulence with
vC,Vcrit (Hanssen et al., 1992). Axes are labeled with dimen-
sionless units: (a) weak-turbulence spectrum W(k); (b) strong-
turbulence spectrum W(k) from simulations using the
Zakharov equations; (c) density spectrum ^un(k)u2& corre-
sponding to (b).
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which is broad and essentially featureless. Figure 26
shows weak turbulence and Zakharov-equation Lang-
muir spectra for a case with vC.Vcrit , showing a trun-
cated decay cascade in the Zakharov case (Hanssen
et al., 1992). This truncation may be due to modulational
instability of the propagating waves at the lower end of
the cascade, enhanced damping due to scattering off en-
hanced short-wavelength density fluctuations, or direct
nucleation from the bottom end of the observed cascade
(Hanssen et al., 1992). The precise truncation mecha-
nism is not fully understood and its nature may affect
the scaling properties of strong turbulence in this re-
gime. The density spectrum in Fig. 26(c) shows a peak at
kC due to beating between the driven free modes and
the uniform pump [cf. Eq. (5.18)] plus peaks just below
2kC corresponding to ion sound waves generated in the
decay cascade [cf. Eq. (3.7)].

2. Frequency spectra

One of the key predictions of strong-turbulence
theory is that a substantial fraction of the Langmuir en-
ergy should be trapped in localized states with frequen-
cies below the mean plasma frequency (Doolen et al.,
1985). Cheung et al. (1989, 1992), DuBois et al. (1990),
and DuBois and Rose (1991), obtained frequency spec-
tra at fixed k from 2D Zakharov simulations of clamp-
driven turbulence, with vC.0 (dimensionless frequen-
cies are measured relative to the mean plasma
frequency). Such spectra, shown in Fig. 27, correspond
to those of waves on vertical cuts through Fig. 13(a) at
fixed k , with Fig. 27(a) having lower vC and kC than Fig.
27(b). They exhibit a ‘‘free-mode’’ peak at v5k2 (in
dimensionless units), due to propagating linear waves.
For v&0, there is also a broad feature that corresponds

FIG. 26. Spectra from clamp-driven turbulence with
vC.Vcrit (Hanssen et al., 1992). Axes are labeled with dimen-
sionless units: (a) weak-turbulence spectrum W(k); (b) strong-
turbulence spectrum W(k) from simulations using the
Zakharov equations; (c) density spectrum ^un(k)u2& corre-
sponding to (b).
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to the energy in collapsing wave packets with negative
eigenfrequencies, although the discrete structure seen in
Fig. 13(a) is smoothed out by averaging over many pack-
ets or over time for a single packet. Such features are
also seen in simplified, scalar models of nucleation and
collapse (DuBois et al., 1988, 1990). The shape and scal-
ing of the part of the spectrum with v,0 can be calcu-
lated analytically from collapse scalings and the scaling
of mean quantities in the steady state. DuBois et al.
(1990), using their self-similar scalings, found that the
spectrum behaves as uvu2(113D/4). Analytic calculations
of the scalings of the free-mode energy in this context do
not appear to have been undertaken.

VII. NUMERICAL SIMULATIONS OF WAVE COLLAPSE
AND STRONG TURBULENCE

In the preceding sections, many numerical results
have been cited in support of the theoretical concepts
discussed. Indeed, historically, numerical calculations
prompted many of the theoretical insights that have
taken place. This section briefly reviews some of the
main computational developments in the field of wave
collapse and strong turbulence, including simulations
based on the Zakharov and nonlinear Schrödinger equa-
tions, Vlasov simulations, and particle-in-cell methods,
but not weak-turbulence simulations. It is not intended
to provide a comprehensive review of all simulations
that have been undertaken, nor is it a guide to numerical
methods for carrying out such calculations.

A. Nonlinear Schrödinger and Zakharov simulations

In one dimension the initial-value problem for the un-
driven, undamped nonlinear Schrödinger equation can
be solved analytically, via the inverse scattering trans-

FIG. 27. Frequency spectra at fixed k from simulations of
clamp-driven strong Langmuir turbulence with
vC2vp51.731023vp (Cheung et al., 1989). Frequencies are
measured relative to the heater frequency: (a) klD50.06; (b)
klD50.13.
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form, in terms of a superposition of solitons and plane
waves (Zakharov and Shabat, 1971; Thornhill and ter
Haar, 1978; Bullough and Caudrey, 1980). Likewise, 1D
solutions of the Zakharov equations can be expressed in
terms of a superposition of solitons and plane waves
(Gibbons et al., 1977; Thornhill and ter Haar, 1978).
However, in 2D or 3D systems, or when driving and
dissipation are introduced, such solutions are no longer
possible and numerical methods are required.

The nonlinear Schrödinger equation (2.20) and the
Zakharov equations (2.17) and (2.18) can be solved by
finite-difference or spectral methods. One common ap-
proach is to Fourier-transform the spatial coordinates
and work in k space, integrating the mode amplitudes
forward in time using a leapfrog or predictor-corrector
method (see Robinson and Newman, 1989, or DuBois
et al., 1990, for more details). This corresponds to solv-
ing the equations with periodic boundary conditions, but
this constraint does not pose a problem so long as the
overall system size is much greater than that of the phe-
nomena being studied.

There are several advantages to numerical solutions
of the Zakharov equations or the nonlinear Schrödinger
equation: (i) In D dimensions, the size of the computa-
tional grids scales as ND, where N is the number of grid
points in each dimension. This contrasts with Vlasov
simulations, where the scaling is N2D, or ND1Dv if D
spatial dimensions and Dv components of the velocity
are followed. (ii) The fast time scales (;vp

21) have been
factored out, so large time steps ;vp

21 can be taken if a
high-accuracy time-stepping routine is used (Robinson
and Newman, 1989). (iii) It is easy to incorporate arbi-
trary wave dispersion and k-dependent damping opera-
tors in the spectral formulation. (iv) The nonlinear terms
are easily evaluated by transforming to coordinate
space, multiplying the relevant terms, then transforming
back. (v) Instability and clamp drivers can be straight-
forwardly included.

The primary disadvantage of numerical solutions of
the Zakharov equations is that they incorporate all the
approximations inherent in the Zakharov equations
themselves, and it is not possible to test the validity of
these approximations by such simulations. As a conse-
quence, dissipation is included only approximately.
Wave amplitudes are also limited to W&1 to avoid den-
sity perturbations attaining unphysical negative values
during strong wave collapses and because localized heat-
ing modifies the evolution near arrest otherwise. Also,
the Zakharov equations do not incorporate kinetic ef-
fects, except in an ad hoc way via the damping opera-
tors. Some straightforward improvements to the stan-
dard Zakharov equations can be made, although we do
not consider them in detail here. These include, modify-
ing the density response to avoid unphysical negative
densities (Newman et al., 1990), and, more accurately in-
corporating kinetic effects into the ion response (Ham-
mett and Perkins, 1990; Goldman et al., 1993; DuBois
et al., 1995a), using multipole approximations to the
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plasma dispersion functions that determine the disper-
sion of the waves (Robinson and Newman, 1988, and the
references therein).

The first numerical solutions of the nonlinear Schrö-
dinger equation were concerned with problems of time-
independent axisymmetric self-focusing of lasers in non-
linear optical media in which the problem was reduced
to a 1D calculation by symmetry (Kelley, 1965; Za-
kharov et al., 1971; Dyshko et al., 1972). Likewise, early
solutions of the nonlinear Schrödinger equation or Za-
kharov equations in plasma contexts concentrated on
demonstrating the existence and self-similar scalings of
wave collapse by assuming spherical symmetry to reduce
the dimensionality of the problem (e.g., Budneva et al.,
1975; Degtyarev et al., 1975; Zakharov and Shur, 1981).

One-dimensional simulations of the Zakharov equa-
tions have also been used to study strong turbulence.
First, this approach made it possible for the interaction
of many solitonlike packets to be easily followed
(Pereira et al., 1977a) and allowed the differences be-
tween the nonlinear Schrödinger equation and Za-
kharov solutions to be explored (Shen and Nicholson,
1987). Second, driving and dissipation were incorpo-
rated into the basic equations to study forms of turbu-
lence in the absence of true collapse (Pereira et al.,
1977a; Degtyarev et al., 1980; Payne et al., 1984; Doolen
et al., 1985). Restriction to one dimension also allowed
particle acceleration in the turbulent state to be studied
via an equation for the evolution of the electron distri-
bution (Degtyarev et al., 1979; 1980). Third, higher-
order nonlinearities n }2u Eu2m, with m.1, have been
used in 1D simulations of turbulence to precipitate col-
lapse. [Collapse occurs for D>2/m in general (Kuz-
netsov et al., 1986; Pelletier, 1987; Zakharov, Kosmatov,
and Shvets, 1989).] This approach permitted many fea-
tures of strong turbulence to be elucidated, including the
nucleation mechanism for the formation of coherent
wave packets (Doolen et al., 1985; Russell et al., 1986).

Although 1D simulations enable one to study many
features of wave collapse and strong turbulence, they
omit much of the relevant physics. In particular, two-
dimensional simulations are the smallest in which the
standard Zakharov nonlinearity (m51 in the previous
paragraph) gives rise to true collapse.

The earliest 2D simulations of the Zakharov equa-
tions were concerned with demonstrating the existence
of 2D and axisymmetric 3D wave collapse and studying
their properties (Degtyarev et al., 1975, 1976; Galeev
et al., 1975; Pereira et al., 1977b). With the availability of
steadily increasing computing power, subsequent work
concentrated more on damped/driven turbulence, with
energy input from plasma instabilities (Nicholson and
Goldman, 1978; Nicholson et al., 1978; Hafizi et al., 1982;
Weatherall et al., 1983; Robinson and Newman, 1989,
1990a, 1990b, 1990c; Robinson, Newman, and
Rubenchik, 1992), or clamp fields (Pereira et al., 1977a,
1977b; Degtyarev et al., 1984, 1989; DuBois et al., 1988,
1990, 1991; Russell et al., 1988; Degtyarev et al., 1989;
DuBois and Rose, 1991; Hanssen et al., 1992; DuBois
et al., 1993a, 1993b). Because they embody the most es-
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sential physical effects and can be run on relatively large
grids, 2D simulations have provided the most insight
into wave collapse and strong turbulence over the last
two decades. For example, they have demonstrated the
scalings of 2D collapse, multidimensional nucleation, the
two- or three-component nature of strong turbulence
(see Fig. 12), the prevalence of localized states within
the standard Zakharov equations, and the coexistence of
weak and strong turbulence. They have also been ex-
tremely useful in applications to optics, auroral and
space physics, and ionospheric-modification, laser-
plasma, and beam-plasma experiments, as discussed in
Secs. VIII and IX.

Despite the utility of 2D simulations, some aspects of
nonlinear wave physics only manifest themselves in a
fully three-dimensional geometry. For example, the D
dependence of the exponents in Tables I and II can only
be tested by carrying out simulations in both two and
three dimensions. Also, fully three-dimensional simula-
tions, without assumed symmetries, are necessary to test
the scalings of wave collapse fully.

The first fully three-dimensional simulations using the
Zakharov equations were carried out by Robinson et al.
(1988) and Newman et al. (1989), whose results sup-
ported the two-component model, the nucleation sce-
nario, and the usefulness of the spherical-harmonic de-
composition of localized wave packets found in
turbulence. Their work used the spectral code described
in greatest detail by Robinson and Newman (1989). Us-
ing grids of up to 2562 or 643 points, Robinson and New-
man (1990a, 1990b, 1990c, 1991) and Newman and Rob-
inson (1991) carried out detailed statistical studies of 2D
and 3D instability-driven turbulence, establishing the va-
lidity of the scalings in Tables I and II and applying the
results to beam-plasma experiments (see Sec. VIII.B).

B. Particle-in-cell simulations

In particle-in-cell (PIC) simulations, the trajectories of
large numbers of electrons and ions (typically 104 to
106) are followed computationally, using forces com-
puted from the fields due to the particle charges and
currents themselves (Dawson, 1983; Birdsall and Lang-
don, 1985). To reduce noise and increase computational
speed, the fields are computed on a grid and the par-
ticles are smoothed out over a finite spatial region. PIC
simulations have the major advantages that (i) they
make no small-parameter assumptions and can thus be
used to check the validity of the Zakharov equations or
other approximations, (ii) they incorporate kinetic ef-
fects automatically, which are only included in an ad hoc
way in treatments based on the fluid equations, and (iii)
the size of the grids involved scales as ND in D dimen-
sions. The chief disadvantages are that very large num-
bers of grid points and particles are required to model
significant plasma volumes and to reduce statistical noise
to acceptable levels, and that short time steps must be
taken to follow individual oscillations at the plasma fre-
quency. Currently, these considerations limit the appli-
cability of PIC methods to study of single collapsing
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wave packets—turbulence cannot be studied except in
one-dimensional cases, where true collapse does not ex-
ist.

Pereira et al. (1977a), Anisimov et al. (1982, 1983),
D’yachenko et al. (1988), Zakharov, Pushkarev,
Rubenchik, Sagdeev, and Shvets (1988, 1989), and Za-
kharov, Pushkarev, Sagdeev, Solov’ev, Shapiro,
Shvets, and Shevchenko (1989) carried out PIC simula-
tions of 1D turbulence, and 2D and 3D wave collapse,
invoking fourfold and eightfold symmetries to render
tractable the 2D and 3D cases, respectively. Even so, the
latter authors employed 800 000 particles in two dimen-
sions and 1.8 million in three dimensions. They found
that dissipation of the fields via interactions with elec-
trons was the primary arrest mechanism and studied the
resulting accelerated electron distribution. They ob-
tained arrest scales of ;10lD in two dimensions and
;15lD in three dimensions, consistent with the values
and trend with D predicted by transit-time dissipation
theory (Robinson, 1991; Sec. V.F). Newman et al. (1990)
explored the validity of the Zakharov equations by com-
paring Zakharov-equation simulations of wave collapse
with 2D particle-in-cell simulations of the same situa-
tions. They confirmed arrest by transit-time damping at
a scale of (10–15)lD , consistent with previous work,
without invoking fourfold symmetries, and showed that
the Zakharov equations remain valid for W&1 (see
Secs. II.B and V.F). They also found that localized heat-
ing in the core of a wave packet is the primary cause of
discrepancies between the particle-in-cell and Zakharov-
equation results for W'1, consistent with the earlier
results. In the context of ionospheric-modification ex-
periments, Clark et al. (1992) showed that a 1D hybrid
model, with electrons followed using the Zakharov
equations and ions via PIC methods, gives essentially
the same results as the Zakharov equations for turbu-
lence.

C. Vlasov simulations

One-dimensional strong-turbulence and modulational
instability have been studied using the coupled Vlasov-
Poisson equations (Rowland, 1980, 1988; Wang et al.,
1994, 1995, 1996). This method involves solving the Vla-
sov equations for the time-dependent electron distribu-
tion function in velocity and space, subject to electric
fields generated as a result of charge imbalances be-
tween the ion and electron components (Cheng and
Knorr, 1976). The ions were followed using fluid equa-
tions. Major advantages of such hybrid Vlasov-fluid
simulations are that they avoid the noise associated with
particle-in-cell methods and most of the assumptions in-
herent in Zakharov equations. The chief disadvantage,
numerically, is that the size of the grids involved scales
as N2D, where N is the number of points followed in
each space and velocity dimension. It is this feature that
has limited Vlasov simulations to date to one dimension.

Rowland (1980, 1988) investigated beam-plasma in-
teractions in one dimension using the Vlasov equations
for both electrons and ions. He showed that modula-
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tional instabilities can saturate the beam instability and
heat ambient electrons to form a superthermal tail ex-
tending toward the beam in velocity space.

Wang et al. (1994, 1996) compared clamp-driven 1D
Langmuir turbulence simulated with the Vlasov-fluid
and Zakharov equations. They studied the formation of
hot electron tails in the Vlasov case and found that lo-
calized wave packets emit ‘‘jets’’ of accelerated particles
in phase space, as seen in particle-in-cell simulations
(Zakharov, Pushkarev, Rubenchik, Sagdeev, and Shvets,
1989; Newman et al., 1990) and as predicted by transit-
time arrest theory (Robinson, 1991). As in the PIC simu-
lations (Newman et al., 1990), particle heating was found
to be the main cause of differences between the Vlasov-
fluid and Zakharov-equation simulations, with up to
200% local changes in Te . Wang et al. (1995) also stud-
ied one-dimensional modulational instabilities that led
to self-focusing into localized dissipative structures, and
nucleation in the residual density wells remaining after
burnout of such structures. Being one dimensional, these
dissipative structures did not undergo true collapse.

In a complementary development, Helmerson and
Mjo” lhus (1994) carried out 1D simulations using the first
Zakharov equation to track the electrons and the Vlasov
equation for the ions. They compared the results for
parametric instabilities, strong turbulence, and nucle-
ation with the Zakharov equations, finding good quali-
tative agreement.

VIII. EXPERIMENTAL APPLICATIONS

The first experiments on self-focusing were done in
the 1960s using laser beams in solids. Plasma experi-
ments on the analogous phenomenon of wave collapse
began in the 1970s, in beam-plasma and laser-plasma
contexts. During the 1970s applications to ionospheric-
modification experiments and interpretation of solar ra-
dio bursts were also pursued. New areas of application
in the 1980s and 1990s have involved interpretation of in
situ observations of electrostatic waves at the planets
and in the auroral regions of the Earth. Some applica-
tions to solar physics, pulsars, and other areas of astro-
physics have also been proposed.

This section reviews applications of the theory of un-
magnetized wave collapse and strong turbulence to phe-
nomena in plasmas that are at most weakly magnetized
(i.e., magnetic effects do not dominate during wave col-
lapse). In order to minimize the complications at this
point, analogous phenomena in more strongly magne-
tized plasmas are discussed in Sec. IX, along with appro-
priate generalizations of the unmagnetized theory. The
applications considered here include beam-driven and
clamp-driven wave collapse and turbulence in electron-
beam, laser-plasma, ionospheric-modification, and space
physics contexts. In some cases, the experiments have
been carried out specifically to test the predictions of
strong-turbulence theory, while in others, the theory has
shed light on experiments carried out for other reasons.
We do not discuss experimental techniques in any detail
here.
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FIG. 28. Experimental regimes of wave collapse and strong turbulence, showing typical ranges of NeTe , E , and W (diagonal
lines).
Figure 28 shows typical parameter values for some
natural and laboratory plasmas in which wave collapse
and/or strong turbulence are thought to exist or have
been proposed. What is striking are the huge ranges of
wave and particle energy densities and length scales,
over which these phenomena have been observed—over
23 orders of magnitude of Ne , 4 orders in Te , and 15
orders in E .

Before proceeding, we note that a common tendency
in the literature has been to interpret strong, localized
fields observed in the laboratory and nature to be col-
lapsing wave packets. This is by no means always justi-
fied and has led to some erroneous interpretations of
experimental data. For this reason, discussion of experi-
mental applications is preceded by Sec. VIII.A, in which
some key points are recapitulated and common miscon-
ceptions regarding strong turbulence and wave collapse
are discussed.
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A. Common misconceptions

The most striking characteristic of wave collapse and
strong turbulence is the formation of intense, localized
wave packets whose energy densities can approach the
plasma thermal energy density and whose minimum
scales can be as small as a few Debye lengths. The first
common error in applications is to assume that if a field
is localized and intense, it is automatically associated
with wave collapse. Cairns and Robinson (1992a, 1992b,
1995a) showed that two proposed occurrences of wave
collapse were not consistent with this phenomenon (see
also Secs. VIII.C and VIII.D below). They noted that
other mechanisms that could produce localized Lang-
muir waves, or field structures resembling them, include
beats between parent Langmuir waves and product
waves produced by electrostatic decay, Langmuir wave
caustics or foci, resonant wave enhancements, ion holes,
short-scale fluctuations in the Langmuir growth rate due
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to beam inhomogeneities, and variations imposed by
ambient density fluctuations (Robinson, 1992). Muschi-
etti et al. (1995) have also suggested a kinetic mechanism
for localization of beam-driven Langmuir waves.

Before assuming that a localized wave packet is asso-
ciated with wave collapse, it is necessary to check that its
field strength and length scale are such that it exceeds
the collapse threshold Wai

2/lD
2 5Q . It is also necessary

to demonstrate that the level of background density
fluctuations is not so high as to disrupt the packet before
it can collapse (Cairns and Robinson, 1992a, 1995a; see
also Sec. VIII.D). Another useful technique in checking
for the presence of specific nonlinear wave processes is
to calculate third- or fourth-order frequency cross-
correlation coefficients and look for peaks correspond-
ing to the theoretical frequency relationships (Bale
et al., 1996).

Sometimes it is suspected that plane waves are subject
to a modulational instability that gives rise to spatial
clumping of waves. In this case, it is particularly impor-
tant to apply the instability criterion G.Dv [see Eq.
(3.16)], using the growth rate for the correct region in
Fig. 3. Second, one must be sure that no other instability
has a higher growth rate [see the discussion of Eq. (6.8)].
Many errors have been made in the literature by apply-
ing the wrong criterion or by omitting this step entirely.
One should also be careful that plane-wave criteria are
appropriate—many turbulent systems are modulation-
ally stable, but undergo wave collapse via the nucleation
mechanism (see Secs. V.A, V.C, and Russell et al.,
1988). Collapse directly from beam-driven waves, for ex-
ample, seems to be very difficult unless the waves are
extremely intense. Rather, parametric decay usually first
carries the energy into a low-k condensate, whence it
nucleates into collapsing packets or, if the beam wave
number is not too high, it can nucleate directly.

A third area in which many errors are made is the
assumption that wave-collapse theory predicts the exist-
ence of a predominance of packets with scales of a few
Debye lengths (i.e., near af). Although such scales are
possible near the point of arrest, they represent a very
small fraction of packets, since collapse accelerates as
the scale decreases, and dissipation is extremely rapid
near arrest. By far the majority of packets have scales
near the nucleation scale ai , with

ai'~Q/^W&!1/2lD@af , (8.1)

from Sec. VI.A. The apparent reason for errors of this
type is a confusion with the existence of stable solitons a
few Debye lengths in size in one-dimensional systems.
Such solitons simply do not exist in two or three dimen-
sions within the framework of the nonlinear Schrödinger
equation or Zakharov equations. Nor do higher-order
nonlinearities cut in soon enough to stabilize collapsing
packets before they reach the arrest scale (Newman
et al., 1990). A related error is to assume that af'lD ; all
current analyses, simulations, and experimental results
imply that the arrest scale in three dimensions is of the
order of 20lD .
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
Incorrect analogies with soliton solutions of the 1D
dissipation-free equations have also led some authors to
expect that collapsing wave packets will typically propa-
gate at a velocity comparable to the sound velocity,
where Eq. (4.5) implies that the ion response is stron-
gest. In fact, ion inertia and damping of the ion response
largely restrict packet velocities to values much less than
the sound velocity (see Sec. V.B and Robinson, Wout-
ers, and Broderick, 1996). The predominance of station-
ary collapsing packets then tends to rule out high rates
of collisional energy exchange between them, except in-
directly via particle acceleration, for example (Benford
and Zhai, 1993).

A fourth category of misconception is the idea that a
given physical situation corresponds to weak turbulence
or strong turbulence, but never both. This has led on
occasion to categorical (but often incorrect) statements
that only one of the two types of turbulence can be rel-
evant to one or another particular application. In reality,
it is quite possible for one part of a Langmuir spectrum
to be describable by weak turbulence, while another in-
volves strongly turbulent interactions (see Secs. III.C,
IV.C, and VI.A). The classic example is turbulence
driven at high k , where a weak-turbulence cascade car-
ries the energy to a low-k condensate that feeds wave
collapse. A related misconception is that strong- and
weak-turbulence theories are somehow complementary
theories of interactions between Langmuir waves and
ion sound waves. In reality, the Zakharov equations
contain the relevant three-wave parametric interactions
of electrostatic decay and coalescence, whose rates also
pass over to the correct random-phase limits as the
bandwidths increase. Hence the Zakharov equations
generalize the weak-turbulence equations. In the limit of
low W , the Zakharov equations also have the linear
wave modes as solutions (see Secs. II.C and III.A).

Other errors sometimes made in the literature include
the following. (i) The assumption that 3D collapse is
strong, i.e., energy conserving. In most cases, at least the
initial stages of 3D collapse are subsonic and hence
weak (see Sec. V.E). It should also be recalled that the
most commonly discussed supersonic scalings, Eqs.
(5.27) and (5.28), are based on an assumption of strong
collapse. (ii) The assumption that the crossover from
subsonic to supersonic collapse occurs precisely where
W5me /mi . Numerical and analytic evidence points to
the transition occurring at a large multiple of this value
(see Secs. V.E and VI.C).

B. Electron-beam experiments

Some of the most direct evidence for self-focusing and
wave collapse in plasmas has come from experiments in
which an electron beam is fired into a long cylinder of
plasma. Wong and Quon (1975) fired a beam into a
plasma with Ne51014–1015 m 23, Te523104 K, and a
beam velocity vb5(5–10)Ve . Beam-driven Langmuir
waves were observed to decay electrostatically. The par-
ent and product waves then beat to produce a 1D
standing-wave pattern. The peaks of this pattern were
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then seen to steepen and form localized spikes with
scales of ;10lD , separated by half a wavelength of the
initial waves (see Fig. 29). Peak energy densities of
W'0.2 were seen in density wells having depths of up to
15% of the unperturbed density, and the electron beam
was strongly scattered when the localized packets were
seen. Wong and Quon argued that this was evidence for
a modulational instability of the standing waves and of
transit-time interactions between electrons and the lo-
calized packets. Several similar experiments were car-
ried out in the 1970s, finding evidence for trapping of
Langmuir waves in large, apparently self-generated,
density depressions due to ion sound waves, and for as-
sociated transit-time interactions with beam electrons
(Quon et al., 1974; Ikezi et al., 1976; Kiwamoto et al.,
1977). Wong et al. (1977) studied interactions of beam
electrons with 1D localized packets excited by a radio-
frequency field (see Sec. VIII.E). They found that the
packets were coherent and their scattering of electrons
was consistent with one-dimensional transit-time inter-
action theory (see Sec. V.F).

Further observations of nonlinear Langmuir interac-
tions in 1D geometries were carried out by Cheung et al.
(1982), who observed density depressions of up to 50%
on a scale of 12lD . They also saw electromagnetic emis-
sion at harmonics of a basic frequency of '0.7vp , which
they interpreted as the frequency of a localized eigen-
state trapped in the density depression. Leung et al.
(1982) set up a 1D standing Langmuir wave using two
counterpropagating electron beams. This removed the
role of electrostatic decay in setting up the standing
wave. Again, they observed the formation of spiky, soli-
tonlike Langmuir peaks with a scale of ;7lD , a density
perturbation of ;10%, and W'0.1–0.2. Simultaneous
transit-time acceleration of electrons occurred, with the
formation of a high-energy tail on the electron distribu-
tion, and it was inferred that these interactions arrest
collapse.

All of the above experiments involved Langmuir
fields that varied in only one dimension, leading to the
formation of reasonably stable localized soliton struc-
tures. Wong and Cheung (1984) succeeded in studying
the collapse of three-dimensional Langmuir wave pack-
ets in a beam-driven plasma by averaging over many
shots in a highly reproducible system with Ne5(2–3)

FIG. 29. Evolution of localized Langmuir field spikes and cor-
responding density depressions seen by Wong and Quon
(1975). Density Ne is measured in units of the mean value.
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31015 m 23 and Te'104 K. In this experiment, they
measured the dimensions and intensity of a packet as it
collapsed from an initial scale of (150–500)lD to a final
scale of (20–40)lD , with W'1 as shown in Fig. 30. They
found different power-law scalings of the packet size,
depending on which dimension of the packet was ob-
served, but the inertial range was not sufficiently well
developed for these to constitute a definitive test of the
predicted scaling exponents. They also saw significant
beam scattering by the packet prior to collapse, followed
by decoupling of the collapsing waves from the beam as
collapse proceeded. This was consistent with the theory
in Sec. V.C and with Cheung et al.’s (1982) observation
that the frequency of a state in a density well is lowered,
leading to decoupling from the beam.

Cheung and Wong (1985) used the same apparatus as
Wong and Cheung (1984) to study the long-time evolu-
tion of nonlinear Langmuir waves initially excited by a
beam instability. Their results showed repeated renucle-
ation of collapsing wave packets at a nearly fixed loca-
tion. Each packet formed, collapsed, and decoupled
from the beam, then burned out, leaving a localized den-
sity well that relaxed and renucleated further waves. Af-
ter each burnout, the Langmuir activity was observed to

FIG. 30. Collapsing packet seen by Wong and Cheung (1984),
showing contour plots of Langmuir energy density. Time in-
creases toward the bottom. Note the different scales on the
two axes, where k050.03kD is the beam-driven wave number.
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be very low and deep density wells were found to sup-
press beam-plasma coupling, as found by Wong and
Cheung (1984).

At the same time as Wong and Cheung’s (1984) work
on individual wave collapses, other beam-plasma experi-
ments also began to shed light on strong Langmuir tur-
bulence, consisting of many collapsing wave packets
with scales much smaller than those of the apparatus
(unlike the previous beam-plasma experiments, de-
scribed above). Janssen, Bonnie, Granneman, Kre-
mentsov, and Hopman (1984), Janssen, Granneman, and
Hopman (1984), and Hopman and Janssen (1984) car-
ried out a series of experiments in which an electron
beam was accelerated by an 800-kV potential and in-
jected into a 2.5-m-long preionized plasma. Stark shifts
were used to estimate electric-field strength distribu-
tions, while angular and energy analyzers were used to
determine the pitch angle and energy distributions of
the electron beam. Typical plasma parameters were
Ne5531019 m 23 and Te513106 K, much higher than
in the experiments discussed above. These experiments
found typical amplitudes of beam-driven Langmuir
waves to be on the order of 106 V m 21, but the scatter-
ing of the beam (in both energy and angle) was found to
be far too great to be accounted for by a model in which
the waves were uniformly distributed. Instead, a model
in which the waves were largely confined to small re-
gions of much higher fields was proposed, implying the
existence of intense localized packets. Field strengths of
up to ;108 V m 21 were inferred on the basis of mini-
mum length scales of 10lD . Hopman and Janssen
(1984) concluded that the localized packets inferred
were consistent with strong Langmuir turbulence.

Robinson and Newman (1990c) and Newman and
Robinson (1991) applied their two-component theory of
strong Langmuir turbulence to the relativistic-electron-
beam experiments described in the previous paragraph.
They found the scattering of beam electrons in energy
(net scattering typically 6100 keV) to be consistent with
random transit-time interactions with a steady-state
population of collapsing wave packets corresponding to
the typical observed value of ^W&'0.014 and peak fields
of ;23107 V m 21. However, they found values of an-
gular scattering of only 0.1–0.4 times the observed val-
ues of 10°–20°. Melatos et al. (1996) reanalyzed this
problem using a more sophisticated Fokker-Planck for-
mulation, which treated angular scattering more accu-
rately. They reached essentially the same conclusions as
Robinson and Newman (1990c) and suggested that the
discrepancy in angular scattering is chiefly connected
with transverse gradients of the beam, which were not
taken into account in their analysis.

Levron et al. (1987) investigated the distribution of
electric-field strengths in beam-driven strong Langmuir
turbulence, using an experimental setup and plasma pa-
rameters similar to those employed by Hopman and
Janssen (1984). They found a distribution of fields con-
sistent with Eq. (6.41) in the regime 0.6&W&3, which
they termed superstrong turbulence. Benford (1987) pro-
posed a model of collisional energy exchange between
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moving collapsing packets that yielded such a statistical
distribution. However, given the strong tendency of col-
lapsing wave packets to be stationary, collisions at the
necessary rate appear unlikely unless they are of some
other type, e.g., mediated indirectly via particle interac-
tions (Benford and Zhai, 1993). Robinson and Newman
(1990c) and Newman and Robinson (1991) noted that,
for collapse amid turbulence, the value of Wiai

2/lD
2 is

not always precisely equal to the collapse threshold Q
for an isolated wave packet. Rather, turbulent interac-
tions randomize the value of the collapse threshold
about a characteristic value of this order, leading to a
distribution of the form of Eq. (6.41) in the superstrong
regime where fields are attributed to packets at or near
arrest. Fitting Eq. (6.41) to Levron et al.’s (1987) results
and reexpressing Ef0 in terms of the arrest scale af , they
found af5(1665)lD , in good agreement with 3D
particle-in-cell simulations (see Sec. VII.B) and transit-
time damping estimates (see Sec. V.F), and reasonable
agreement with Wong and Cheung’s (1984) estimate of
(30610)lD . The peak energy densities at the arrest
scale were estimated to be W;1, consistent with obser-
vations.

Benford et al. (1991) reported an exponential decay of
the high-E tail of the electric-field distribution, after the
end of beam driving, with

P~E !}exp~2E2/2Ef0
2 !exp~2t/t!, (8.2)

where t'1026 s. Benford and Zhai (1993) argued that
nucleation and wave collapse would yield too low a
value of t and proposed an alternative model in which
wave packets undergo indirect ‘‘collisions’’ via wave or
particle exchange and obtained constraints on the mag-
nitude and functional form of the effective collision fre-
quency. However, this decay behavior has yet to be fully
explained.

C. Solar type-III radio sources

Energy release during solar flares heats and acceler-
ates coronal electrons. Electrons on open magnetic-field
lines can then escape into the interplanetary medium to
form so-called type-III electron beams. These beams
move at typical velocities of 0.1c–0.3c by the time they
reach one astronomical unit (1 AU '1.5031011 m) from
the Sun, but have been observed to have speeds any-
where from 0.03c–0.99c nearer the Sun (Hoang et al.,
1994; Poquerusse, 1994). Figure 31 is a schematic of the
zone swept out by a type-III electron beam travelling
along interplanetary field lines.

Type-III beams have been observed by satellites in
situ to generate intense, highly clumpy Langmuir waves
(Gurnett and Anderson, 1976, 1977; Lin et al., 1981,
1986). Electromagnetic emission has been seen, with
observations showing fundamental (v'vp) and
harmonic (v'2vp) radiation, sometimes simulta-
neously (Wild, 1950; Dulk, Steinberg, and Hoang, 1984;
Suzuki and Dulk, 1985). Remote sensing has made it
possible to follow beams from very close to the Sun out
to beyond 1 AU.
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A theoretical picture of type-III emission was first put
forward by Ginzburg and Zheleznyakov (1958) and,
with some modifications, the core of this picture is still
current today. Briefly, a type-III beam generates Lang-
muir waves via a bump-on-tail instability, in which the
presence of the beam constitutes a population inversion,
giving rise to a coherent wave instability. Growth of
Langmuir waves then tends to relax the beam by flatten-
ing the population inversion. Nonlinear wave-wave in-
teractions involving these waves then lead to fundamen-
tal and harmonic radio emission. Despite general
agreement on these points, the nature of the nonlinear
interactions has been the subject of intense research and
considerable debate over the intervening time. Two as-
pects of the observations have proved to be particularly
important to the development of the theory and its re-
lationship to strong-turbulence phenomena. First, Stur-
rock (1964) noted that, in the absence of a saturation
mechanism, the bump-on-tail instability would remove
energy so fast that a type-III beam would be able to
propagate only a short distance (perhaps hundreds of
km), rather than the 1 AU or more observed. This prob-
lem is commonly called Sturrock’s dilemma. Second, the
in situ observation of extremely spiky Langmuir waves
(Gurnett and Anderson, 1976, 1977) suggested the op-
eration of a dynamical localization mechanism, such as
Langmuir collapse.

Strong-turbulence processes have been advanced to
resolve Sturrock’s dilemma. For example, Papadopoulos
et al. (1974), Rowland and Papadopoulos (1977), Row-
land (1980), and Rowland et al. (1981) showed that the
modulational instability can rapidly remove beam-
generated Langmuir waves from resonance with the
beam by scattering them to different k , thereby reducing
the beam’s energy-loss rate and allowing it to propagate
further. This mechanism gives rise to product waves at
high k , where they are rapidly dissipated. In laboratory
situations, this may explain observed persistence of
beams (Breizman and Ryutov, 1974). However, this
mechanism requires waves sufficiently monochromatic
to satisfy the condition G.Dv [see Eq. (3.16)]. Balance

FIG. 31. Schematic of the zone swept out by a type-III solar
electron beam as it streams along the Archimedean spiral
formed by the interplanetary field lines (Robinson and Cairns,
1994). The solar wind flows radially outward at a speed vsw .
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between growth and damping for typical parameters at 1
AU implies G'(0.1–1) s 21 for the modulational insta-
bility (Lin et al., 1986; Robinson et al., 1993). In contrast,
the bandwidth of the beam-driven waves is of order
Dv'3vpDvbVe

2/vb
3 . Typical parameters at 1 AU

(vp'1.53105 s 21, Dvb /vb'0.3, Ve'1.53106 m s 21,
and vb'33107 m s 21) then yield Dv'340 s 21@G .
Hence modulational interactions are stabilized and the
proposed mechanism is ineffective in this context (Rob-
inson, Willes, and Cairns, 1993; Cairns and Robinson,
1996). Modulational instability would require fields of
order 0.1 V m 21, compared with the electrostatic decay
threshold of ;3 mV m21 (Robinson, Willes, and Cairns,
1993; Cairns and Robinson, 1996).

Two-dimensional Zakharov-equation simulations of
beam-driven Langmuir waves showed that energy is
transferred primarily to smaller, not larger, k via a decay
cascade (Nicholson and Goldman, 1978; Nicholson et al.,
1978; Hafizi et al., 1982; Weatherall et al., 1983; Gold-
man, 1984). This leads to formation of a condensate,
which then feeds energy to collapsing wave packets. Un-
der typical conditions relevant to type-III bursts, direct
modulational instability of the beam-driven waves does
not predominate. Hafizi et al. (1982), in particular, ar-
gued strongly against modulational-instability saturation
of type-III beam instabilities.

After the main work on saturation of the beam insta-
bility via modulational interactions, it was shown that
quasilinear relaxation could be substantially slowed be-
cause electrons further back in a type-III beam reabsorb
waves emitted by electrons near the front (Grognard,
1982, 1985), thus partly resolving Sturrock’s dilemma
without recourse to strong-turbulence processes. The re-
sult was a beam that propagated close to marginal sta-
bility on average, with greatly reduced energy loss.
Nonetheless, there remained the question of the source
of the extreme Langmuir wave clumping observed in
situ (Gurnett and Anderson, 1976, 1977), which has been
observed on all scales from &100 km to *106 km (Rob-
inson, Cairns, and Gurnett, 1992, 1993). While it is
tempting to invoke Langmuir collapse to account for in-
tense, short-scale field structures, Robinson, Cairns, and
Gurnett (1992, 1993) noted that the clumping occurs at
all field levels, implying that the mechanism is linear in
the Langmuir intensity. Robinson (1992) proposed a sto-
chastic growth theory in which the beam propagates in a
state close to marginal stability, with ambient density
fluctuations (Celnikier et al., 1983, 1987) randomly
modulating the growth rate (Smith and Sime, 1979).
This theory has since been able to account for most ob-
served features of type-III Langmuir waves, as well as
associated ion sound waves and electromagnetic emis-
sion, with its predictions being extensively verified
against observations (Robinson, 1992, 1995, 1996; Rob-
inson, Cairns, and Gurnett, 1992, 1993; Robinson and
Cairns, 1993, 1994; Robinson, Willes, and Cairns, 1993;
Cairns and Robinson, 1995c, 1996; Hospodarsky and
Gurnett, 1995).

The stochastic-growth theory does not rule out a role
for wave collapse or strong turbulence in type-III radio
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sources at 1 AU (and, to date, makes fewer quantitative
predictions at other heliospheric distances, where condi-
tions are different and fewer in situ observations are
available to constrain the predictions). However, it im-
plies that such effects are not central to the observed
phenomena. Evidence against wave collapse as the satu-
ration mechanism for beam growth includes the follow-
ing: (i) the highest fields seen are very close to the esti-
mated electrostatic decay threshold and well below the
collapse threshold (Robinson, Cairns, and Gurnett,
1993; Robinson, Willes, and Cairns, 1993), (ii) ion sound
waves and Langmuir beats consistent with three-wave
interactions, especially electrostatic decay, have been
seen in situ (Lin et al., 1986; Gurnett et al., 1993; Cairns
and Robinson, 1995b; Hospodarsky and Gurnett, 1995),
(iii) no power-law tail is seen in the probability distribu-
tion P(E) as would have been expected if wave collapse
were common [see Eq. (6.40)], and (iv) ambient density
fluctuations, produced by mechanisms other than strong
turbulence, which have a level of a few percent, would
be likely to disrupt nucleating packets before collapse
could get under way (Robinson, Willes, and Cairns,
1993; Cairns and Robinson, 1995a; see next paragraph).

Recent Ulysses observations of millisecond spikes su-
perposed on broad Langmuir wave packets in type-III
radio sources prompted explanations in terms of wave
collapse (Kellogg et al., 1992; Thejappa et al., 1993). In
these theories it was argued that the observed spikes
represented collapsed packets with scales of order
10lD . Cairns and Robinson (1995a) compared the ob-
served fields with predictions from wave-collapse theory
and argued against this explanation on the following
grounds: (i) The collapse threshold is exceeded by nei-
ther the spikes nor the underlying wave packets. In
terms of observable quantities, the requirement for col-
lapse is

uE~r5a !u2*
100NkBTe

e0

lD
2

a2 , (8.3)

where E(r5a) is the typical root-mean-square field one
scale size a from the center of a packet, the typical value
likely to be seen by a spacecraft, given that it encounters
a packet. (ii) Neither type of field satisfied the criterion

uE~r5a !u2*
100NekBTevS

e0Ve

lD

a
, (8.4)

for nucleating packets to escape disruption by ambient
density fluctuations, which can destroy the density well
that supports the nucleating state. (iii) Wave-collapse
theory does not predict a predominance of structures
near the arrest scale (see Sec. VIII.A), contrary to the
predominance of short-scale structures observed.
Rather, a distribution of scales should be seen, in which
larger scales predominate (from early stages of wave
collapse), correlated with lower fields. Subsequently,
Cairns and Robinson (1995a; see Sec. VIII.A) suggested
several physical mechanisms that might give rise to in-
tense fields at scales of &10lD , finding only one plau-
sible candidate among their suggestions, namely nonlin-
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ear Bernstein-Greene-Kruskal (Bernstein et al., 1957)
modes, called electron holes. Subsequently, Cairns
(1995) argued on statistical grounds that the observed
spikes are most probably an instrumental artifact.

Overall, it appears that strong turbulence and wave
collapse are not significant in type-III sources at 1 AU,
although they are not strictly forbidden. However, it is
still possible that these phenomena play a role closer to
the Sun, where Langmuir energy densities are higher (as
are plasma densities and temperatures, however, which
mitigate against collapse). Another possible application
of strong turbulence is to sources of type-II solar radio
bursts, where emission is driven by beams generated at
shock waves (Nelson and Melrose, 1985).

D. Planetary foreshocks

It is well known that a bow shock exists where the
solar wind, carrying the frozen-in interplanetary mag-
netic field, impinges on the Earth’s magnetic field. Dis-
sipative processes at the shock lead to acceleration of
electrons and consequent ejection of beams along inter-
planetary field lines, as shown in Fig. 32 (Filbert and
Kellogg, 1979; Newman, 1985). The region connected to
the bow shock by field lines is termed the foreshock.
Foreshock electron beams have been observed in situ
(Fitzenreiter et al., 1984) and are believed to generate
strong Langmuir waves observed by satellites such as
IMP 6 and ISEE 1, shown in Fig. 33 (Fredericks et al.,
1968; Filbert and Kellogg, 1979; Etcheto and Faucheux,
1984). Newman (1985), Cairns and Melrose (1985), and
Cairns (1987) have shown that the observed electron
distributions are unstable and can lead to Langmuir
wave generation via a bump-on-tail instability (see Sec.
VIII.C). Newman (1985) showed that this can be fol-
lowed by an electrostatic decay cascade, formation of a
condensate, and wave collapse.

FIG. 32. Schematic of the foreshock region, showing interplan-
etary magnetic-field lines, the bow shock, and the downstream
distance parameter DIFF (Newman, 1985; Robinson and New-
man, 1991a, 1991b).
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Peak electric fields observed by satellites appear to be
too far above the typical local fields to be consistent with
incoherent Gaussian field statistics like these in weak
turbulence. Robinson and Newman (1991a) developed a
model in which strong fields correspond to coherent
wave packets that nucleate and decouple from a weak-
turbulence background as they collapse. The packets
then convect downstream with the solar wind velocity,
simultaneously collapsing to scales as short as
af'20lD and fields of Wf'1 (see Sec. V). After cor-
recting for observational underestimation of such short-
scale fields, they found their results to be in agreement
with the observed field distributions. In particular, there
is an increasing fractional spread of high fields, relative
to the local mean value, further downstream. In their
model, this occurs because packets at a given value of
the downstream distance DIFF (see Fig. 32) originated
at an increasingly large range of initial values of this
parameter. Robinson and Newman (1991a) also found
the observed polarization of the highest fields (Filbert
and Kellogg, 1979) to be in good agreement with the
polarization of a ‘‘standard’’ linearly polarized collaps-
ing wave packet given by Eq. (5.4), with Eq. (5.10),
a0050, and a51. One shortcoming in the work of Rob-
inson and Newman (1991a) was that they were restricted
to comparisons with poorly time-resolved data. High-
time-resolution observations from the spacecraft Wind
should overcome this deficiency and provide a definitive
test of the model by observing individual wave packets
in enough detail to compare their fields and scales with
the predictions of collapse theory.

Short-scale (50lD–500lD) Langmuir wave packets
have also been seen in the Jovian foreshock by the Voy-
ager spacecraft (Gurnett et al., 1981), with a structure
similar to that shown in Fig. 10(b). Initially, it was sug-
gested that these short-scale modulations were the result
of modulational instability or wave collapse (Gurnett

FIG. 33. Scatter plot of peak rms fields obtained by the space-
craft IMP 6 vs the downstream distance DIFF in the Earth’s
foreshock, as shown in Fig. 32 (Filbert and Kellogg, 1979).
Here RE is the radius of the Earth.
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et al., 1981). However, reanalysis of these data within
the framework of more recent strong-turbulence theory
showed that the waves failed by a wide margin to satisfy
the criteria of Eqs. (8.3) and (8.4) for collapse amid am-
bient density fluctuations (Cairns and Robinson, 1992a).
However, the modulation was found to be explicable in
terms of beating between a beam-driven Langmuir wave
L and a wave L8 resulting from the weak-turbulence
electrostatic decay L→L81S , where S denotes a sound
wave (Cairns and Robinson, 1992b; see Secs. III.A and
III.B). Their quantitative comparison included the Dop-
pler shift of the sound waves due to motion of the solar
wind past the spacecraft, giving a modulation frequency
of

vmod5S vS

3Ve
2 1

vS8

2vpuvS2vswucosuuu D 21

, (8.5)

vS85~2kL2k* !uvS2vswucosuuu, (8.6)

where vsw is the solar wind velocity and u the angle
between vsw and the interplanetary magnetic field
(which guides the beam and determines the direction of
kb). They found this interpretation of the observations
to be consistent with reasonable physical parameters
and other known physical constraints. Subsequently,
Gurnett et al. (1993) and Hospodarsky and Gurnett
(1995) found evidence for similar modulations in type-
III solar radio sources.

Intense, localized Langmuir waves have now been ob-
served in the foreshocks of Venus, Earth, Mars, Jupiter,
Saturn, Uranus, and Neptune, by ISEE-1, ISEE-2,
Voyager-1, Voyager-2, Phobos, and the Pioneer Venus
Orbiter (Gurnett et al., 1989; Grard et al., 1991; Cairns
and Gurnett, 1992; Hospodarsky et al., 1994). The case
for electrostatic decay, rather than wave collapse, setting
an effective upper bound to the electric-field distribution
(although not prohibiting occasional wave collapses)
was strengthened by Robinson and Cairns’s (1995)
analysis of the behavior of the highest observed fields
with heliospheric distance. Figure 34 shows that this be-
havior corresponds reasonably closely to the trend in the
electrostatic decay threshold. Foreshock-type theories
for outer-heliospheric radio emissions have also been
proposed (Cairns and Gurnett, 1992; Cairns et al., 1993;
and the references cited therein).

E. Radio experiments

The applications considered in the preceding subsec-
tions all involved driving of Langmuir turbulence by
beam-plasma instabilities. In another equally important
class of experiments, intense localized Langmuir waves
are excited by mode conversion of an electromagnetic
wave of frequency vR as it propagates into a region of
increasing density. This method of excitation is appli-
cable to radio-plasma, laser-plasma, and ionospheric-
heating experiments. The mechanism can be understood
by the following argument (Ginzburg, 1960; Kruer,
1988): If the density is a linearly increasing function of
position x , the field is an Airy function of x , as shown in
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Fig. 35. A wave obliquely incident on the density gradi-
ent, at an angle u to the normal, reflects at the reflection
point where vp5vRcosu. However, its evanescent field
can tunnel through to the resonance layer (often called
the critical layer) where vp5vR . If there is a compo-
nent of the electric field along the density gradient at
this layer (i.e., the wave is p polarized), the field can
resonantly excite electron oscillations, and hence Lang-
muir waves, because the electrons oscillate between re-
gions of different density (Ginzburg, 1960; Kruer, 1988).
Energy is ultimately lost from the Langmuir waves, via
dissipation, leading to the term resonance absorption to
describe the overall process. If the Langmuir waves ex-
cited are sufficiently intense, they may undergo collapse,
as evidenced by the particle-in-cell simulations of reso-
nance absorption by Gavrilov et al. (1995).

The earliest experiment of this type was carried out by
Kim et al. (1974), who exposed a plasma with a density

FIG. 34. Electric fields of Langmuir waves observed in the
foreshocks of Venus, Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune vs heliospheric distance r . Robinson and Cairns’s
(1995) best estimate of the electrostatic decay threshold is
shown as a sloping line. ISEE and Voyager observations are
shown as solid bars, while upper bounds obtained by other
spacecraft are shown as dots.

FIG. 35. Airy-function field structure for waves of frequency
vR incident on a density gradient that increases to the right,
showing the critical (or resonance) point (vp5vR) and reflec-
tion point (vp5vRcosu).
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gradient to a radio-frequency (rf) field with E parallel to
the gradient. They found that the ponderomotive force
of the enhanced electric field at the resonant layer gen-
erated a density depression of width ;20lD , with
dNe /Ne'W'0.25. The density depression then trapped
rf waves, further enhancing the field and leading to a
deepening of the well, but not true collapse, since this
was a one-dimensional geometry. The threshold for this
modulational-type instability was found to be much
lower than for a plane wave because of the linear local-
ization of the rf field by the density gradient. Tanikawa
et al. (1984) later probed the structure of trapped Lang-
muir fields in detail, using a very intense pump (W'10
for the pump field). They showed the existence of at
least three distinct eigenmodes in some cases. In an ex-
periment similar to that of Kim et al. (1974), Ikezi et al.
(1974) observed two different types of instabilities: a
modulational instability in the region where vp.vR ,
near the resonance layer, and a decay instability in the
underdense region vR.vp near the reflection point.
However, they found dNe}uEu, rather than dNe}uEu2,
because their field structures moved nearly at the sound
speed, where the Zakharov equations must be modified
to remove the divergent density response in Eq. (4.5).
Bauer et al. (1990) found that the efficiency of formation
of density cavities is highest where the density gradient
is smallest and convection of Langmuir waves out of the
resonant region is least effective in limiting their inten-
sity. They found W as high as 160, well beyond the limits
of validity of the Zakharov equations (see Secs. II.B,
II.C, and V.F). Typical plasma parameters for these ex-
periments were Ne5(1015–1016) m 23 and Te5104 K.

Wong et al. (1977) showed the importance of transit-
time interactions with localized wave packets by forming
a localized packet in a density cavity using incident rf
waves parallel to the density gradient, then probing it
with a low-density electron beam. They found good
agreement with 1D transit-time theory (see Sec. V.F) for
cavities that were essentially planar in structure as a re-
sult of the experimental geometry and boundary condi-
tions. In particular, the phase dependence in Eq. (5.40)
was confirmed and it was shown that the localized field
amplitude was only reduced significantly due to interac-
tion with particles that arrived at phases corresponding
to ucosfu'1.

The above radio-plasma experiments were all essen-
tially one-dimensional in nature. Eggleston et al. (1982)
irradiated a cylindrically symmetric plasma using a con-
centric external antenna consisting of 12 equally spaced
rods parallel to the plasma axis. Density and field per-
turbations perpendicular to the density gradient were
observed to grow on the ion time scale, leading to the
development of a 2D structure on the critical surface. It
was argued that this structure could be the precursor to
wave collapse in experiments of this type, although col-
lapse was not seen.

F. Ionospheric-modification experiments

The electron density increases with height near the
bottom of the so-called F layer of the Earth’s iono-
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sphere, located 200–400 km above the ground (Budden,
1985), reaching a maximum of Ne'(5–80)31010 m 23

and Te'1000 K. Hence radio waves broadcast from the
ground will be reflected back if their frequency is below
the highest F-layer plasma frequency, just as in the labo-
ratory radio-plasma experiments described in the previ-
ous section. It has long been recognized that the density
and temperature of the F layer are sufficiently low that it
is possible to perturb them significantly with transmitters
of reasonable power (;10 MW), broadcasting at a fre-
quency of several MHz in order to resonate with vp in
the F layer. Some of the earliest high-frequency
ionospheric-modification experiments were carried out
in Colorado in 1970 by Utlaut and co-workers (Utlaut,
1970), at Arecibo in Puerto Rico (Wong and Taylor,
1971; Carlson et al., 1972), and in the Soviet Union
(Shlyuger, 1974). The experiments soon revealed heat-
ing of the plasma, excitation of Langmuir waves via
mode conversion, and a variety of nonlinear processes,
which have since provided a rich proving ground for the
theory. The experimental and theoretical literature in
this field is now too vast to review here in detail, so this
section concentrates on aspects in which strong turbu-
lence and wave collapse are likely to play some role and
omits discussion of experimental techniques almost en-
tirely. Previous reviews of the experiments and/or
theory include those by Perkins et al. (1974), Fejer
(1975, 1979), Fejer et al. (1985), DuBois et al. (1990),
DuBois and Rose (1991), Cheung et al. (1992), and
DuBois et al. (1993a, 1993b, 1996). The last six papers
discuss the relevance of strong-turbulence concepts to
ionospheric modification in detail.

The initial aims of ionospheric-modification experi-
ments were to change the temperature and density
of the F-layer plasma. However, very early, Wong and
Taylor (1971) and Carlson et al. (1972) observed
enhanced levels of Langmuir waves, resonantly excited
by the heater. The basic observation technique was to
probe the heated region using a second radar, observing
waves that had backscattered off Langmuir waves via
the processes shown in Fig. 36(a) and 36(b). The back-
scattered radar signal shows two spectra produced by
Raman scattering, one upshifted in frequency due to
scattering involving downgoing Langmuir waves
[Fig. 36(a)] and one downshifted due to emission of
upgoing Langmuir waves [Fig. 36(b)]. These processes
can be written as T(kR)1L(kL)→T(2kR) and
T(kR)→T(2kR)1L(kL), respectively, where kR is the
radar wave vector at the point of scattering and
kL572kR for backscattering to the radar site. The
backscattered spectra occur near vR6vHF , where vR is
the radar frequency and vHF is the heater frequency
(' the Langmuir wave frequency produced by conver-
sion processes). Alternative scattering processes involv-
ing scattering off ion sound waves (Brillouin scattering),
are shown in Figs. 36(c) and 36(d) (Fejer, 1979).

Perkins and Kaw (1971), DuBois and Goldman
(1972a, 1972b), Fejer and Kuo (1973), Perkins et al.
(1974), and Fejer (1979) pointed out the possibility that
intense Langmuir waves might undergo modulational or
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decay instabilities and that backscattering could probe
the resulting Langmuir spectra. Despite Perkins and
Kaw’s (1971) initial discussion of the modulational insta-
bility, the bulk of this work concentrated on decay insta-
bilities in which an incident heater wave T decays into a
Langmuir wave L and an ion sound wave S , as in Fig.
36(e), or the related coalescence process in 36(f). Much
of this analysis was concerned with the saturated spec-
trum of a series of decays within the framework of weak
turbulence theory. However, as pointed out by Cheung
et al. (1992) and Hanssen et al. (1992), for example,
weak-turbulence theory is not valid for the high-energy
levels seen, and strong turbulence effects must be taken
into account. For example, spectra with discrete lines, as
would be expected from a series of backscatter decays
like those in Figs. 5 and 26, are seen only during high-
duty-cycle or continuous heating, well after the onset of
heating, rather than early or in less intense situations
where weak-turbulence theory should provide a better
approximation. Instead, the spectra seen under these lat-
ter conditions are broad, without sharp lines (Showen
and Kim, 1978).

Using theory (Petviashvili, 1975, 1976) and numerical
simulations, Weatherall et al. (1982), Sheerin et al.
(1982), Payne et al. (1984), and DuBois et al. (1990,
1993b) discussed the possibility of modulational instabil-
ity, followed by wave collapse at or near the reflection

FIG. 36. Scattering processes involving electromagnetic heater
waves T : (a) Raman scattering T1L→T8, resulting in an up-
shifted spectrum; (b) Raman scattering T→L1T8, resulting in
a downshifted spectrum; (c) Brillouin scattering T1S→T8; (d)
Brillouin scattering T→S1T8, where S is an ion sound wave;
(e) decay, T→L1S ; (f) coalescence T1S→L .
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FIG. 37. Schematic of ionospheric modification, adapted from DuBois et al. (1993b). The Airy pattern of a vertically propagating
radar is shown at the right, with the reflection altitude at the top of the figure (altitude below the reflection altitude labels the
vertical axis, assuming the conditions pertaining to the Arecibo radar). The horizontal axis of the left frame of the figure is labeled
by frequency relative to the heater frequency. Heavy oblique dashed and solid lines show the plasma frequency and the free-mode
dispersion corresponding to the heater-excited wave number kC , respectively. Insets near the reflection altitude show the com-
ponents of the frequency spectrum corresponding to free modes and collapsing packets (the latter labeled ‘‘caviton continuum’’ by
DuBois et al., 1993b), as well as the wave-number spectrum ^uE(k)u2&. Insets at the ‘‘cascade-matching’’ altitudes show corre-
sponding frequency and wave-number spectra at these heights, where cascade-type spectra are excited. Below the main part of the
figure, two insets show altitude-integrated spectra corresponding to integration over ranges of height near the cascade-matching
and reflection altitudes, respectively. Note that, in the wave-number spectra, the radar ‘‘sees’’ only the Langmuir wave at
kr52kR , where the radar has wave number kR .
point, i.e., within the first Airy maximum shown at the
right of Fig. 37, where the Langmuir waves have such
small wave vectors that they cannot satisfy the condition
for decay to dominate. This corresponds to a dimension-
less heater frequency (measured relative to vp) satisfy-
ing vC,Vcrit . At lower altitudes, where vC.Vcrit is sat-
isfied, one would expect decay features to be more
pronounced (Hanssen et al., 1992). Simulations by
DuBois et al. (1990, 1993b), Cheung et al. (1992), and
Hanssen et al. (1992) also found that nucleation and col-
lapse occur for conditions characteristic of the first Airy
maximum, while decay-like features occur for conditions
elsewhere (see below). These authors also emphasized
that the strong-turbulence Zakharov equations contain
weak-turbulence electrostatic decay and coalescence in-
stabilities in the appropriate limits, in addition to linear
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
theory (see Secs. II.C, III.A, and VIII.A). Hence there
can be no question of a conflict between the two sets of
predictions, only a question of whether or not weak-
turbulence theory is an adequate approximation to the
more comprehensive theory in given situations. This
point bears on the widespread misconceptions that weak
and strong turbulence are somehow complementary
theories and/or that strong-turbulence theory omits
three-wave electrostatic decay interactions.

During the 1980s, series of experiments were carried
out at Arecibo and Tromsø, Norway, using improved
techniques that enabled height-resolved Langmuir spec-
tra to be obtained (Sulzer, 1986). Time-resolved spectra
were also obtained by pulsing the probe radar at various
times during the heating pulse and integrating over
many widely spaced heating pulses to improve the
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signal-to-noise ratio (Djuth et al., 1986, 1994; Cheung
et al., 1989; Fejer et al., 1991). These techniques have
made it possible to test the theoretical predictions more
rigorously.

In ionospheric-modification experiments, the incom-
ing heater wave acts as a clamp field (see Sec. V.C) of
fixed amplitude at a given height, with the amplitude
following the Airy pattern of Fig. 37 at near-normal in-
cidence on the density gradient. Hence the frequency
mismatch vC } (vHF2vp) in Eqs. (5.17) and (5.18) de-
creases to zero as the reflection point (where
vp'vHF) is approached, then becomes negative in the
region beyond. The theory discussed in Sec. VI.A im-
plies that a decay cascade should be prominent for low
altitudes where vC satisfies Eq. (6.8), but that modula-
tional instabilities and collapse should be more impor-
tant near the reflection point, where the inequality (6.8)
is reversed.

Cheung et al. (1989, 1992) published height-integrated
and height-resolved backscatter frequency spectra at
particular wave vectors kL both early and late during
heating. The value of kL is 2kR and is thus determined
by the radar frequency vR and vp at the scattering
height via the electromagnetic-wave dispersion relation
(2.7). Early in the heating cycle Cheung et al.’s (1989,
1992) observations showed the presence of linear ‘‘free-
mode’’ waves at the frequency vL(kL) determined by
the dispersion relation of Langmuir waves in a weak
magnetic field. These waves correspond to the peaks at
the right of Figs. 38(a) and 38(b), seen 0.5 ms and 4 ms
into the heating pulse, respectively. The positions of
these peaks were consistent with free-mode dispersion
of waves with kL52kR for plasma temperatures of 900
K and 1650 K, respectively, as the ionosphere was
heated. A broad spectrum was seen below the heater

FIG. 38. Fixed-k frequency spectra of Langmuir waves from
backscatter observations during ionospheric-modification ex-
periments (Cheung et al., 1989). Frequency is measured rela-
tive to the heater frequency: (a) experimental results from
Arecibo, 0.5 ms into the heating pulse; (b) same as for (a), but
4 ms after the start of the heating pulse.
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frequency, showing no sign of discrete cascade-type
structure. Cheung et al.’s (1992) height-resolved mea-
surements showed that these spectra were confined to
heights near the first Airy maximum of the heater, as
shown in Fig. 37. At lower altitudes, the spectra were of
the ‘‘below-threshold’’ type, so-named because they
were previously interpreted as weak-turbulence spectra
below the threshold for parametric decay.

Cheung et al. (1989) also published the fixed-k,
Zakharov-simulation spectra shown in Figs. 27(a) and
27(b) for conditions pertaining to regions near the first
Airy maximum in Fig. 37 and two different values of
k . These spectra, obtained from 2D clamp-driven Za-
kharov simulations, show a remarkable resemblance to
the experimental results of Figs. 38(a) and 38(b). Theo-
retical work (DuBois et al., 1988, 1990; Russell et al.,
1988; DuBois and Rose, 1991) has shown that the broad
spectrum seen below the heater frequency under these
conditions is, indeed, associated with localized, collaps-
ing waves, which nucleate directly from the pump. For
this reason, it is sometimes called the ‘‘caviton con-
tinuum.’’ These waves are trapped in density wells with
dNe,0, corresponding to decreased local plasma fre-
quencies (cf. the laboratory experiments of Tanikawa
et al., 1984, discussed in Sec. VIII.E). In essence, the
overall frequency spectrum corresponds to that of waves
on a vertical cut through Fig. 13(a) at fixed k—the only
modes encountered are localized-modes at v,vp and
free modes that satisfy the linear dispersion equation.
The localized-mode spectrum is averaged over many
collapsing packets and consequently does not show a
discrete structure. The free modes are pumped either by
beating of the heater wave with the evolving density
cavities associated with collapsing wave packets, or by
coupling to the time-varying localized fields themselves
(DuBois et al., 1990; Cheung et al., 1992). The first,
direct-conversion mechanism is dominant during nucle-
ation, while the latter dominates during collapse. Che-
ung et al. (1992) verified that the free-mode frequency
offset followed the expected dependence on the radar
wave number and heater frequency.

As heating progresses the form of the backscatter
spectra changes, with the broad continuum increasing in
intensity, while the free-mode peak broadens somewhat
but does not change much in intensity (Cheung et al.,
1992). This point is demonstrated in the log-linear plots
of early and late height-integrated spectra shown in Figs.
39(a) and 39(b), respectively. The early spectrum shows
two free-mode peaks, consistent with spatially localized
emission from near the first and second Airy maximums
in Fig. 37, plus a featureless continuum. In the late spec-
trum, the free-mode peaks are still visible with similar
intensity, albeit broadened. However, the continuum has
increased substantially in intensity and has developed
three lines, situated approximately 1, 3, and 5 times the
ion acoustic frequency below vHF . Cheung et al. (1992)
argued that this behavior explains the apparent (rela-
tive) disappearance of free-mode lines seen by them and
Fejer et al. (1991) in some cases after 20–30 ms of heat-
ing.
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In terms of strong-turbulence theory, the increasing
intensity of the continuum is interpreted as being due to
increasing intensity of strong turbulence in the heated
region as heating continues (Cheung et al., 1992). The
‘‘1:3:5’’ lines are interpreted as being due to scattering
off Langmuir waves that have undergone repeated elec-
trostatic decays prior to interaction with the radar. The
broadening of the free-mode peaks is interpreted as be-
ing due to modification of the density gradient by the
mean ponderomotive force of the Langmuir waves near
the Airy peaks (Cheung et al., 1992; DuBois et al.,
1993a, 1993b). Such modifications, estimated to be of the
order of 1%, increase the range of free-mode frequen-
cies within the Airy maximums, where strong turbulence
is intense, and guarantee that matching can be achieved
in these regions (see Fig. 12 of DuBois et al., 1993b).
Further evidence for modification of the density profile
by the heater is the observation of decay spectra from
altitudes that are nonmatching for these waves on the
basis of an unmodified profile (Fejer et al., 1991; DuBois
et al., 1993b).

Sulzer and Fejer (1994) carried out particularly clear
height-resolved ionospheric-heating experiments at
Arecibo using pulses of 5 ms each second to avoid the
generation of density irregularities by the heater. They
saw a weak cascade-type spectrum, followed 1–2 ms
later by a spectrum of the type seen in Fig. 38, with
components due to free modes and collapsing packets.
In longer pulses (50 ms), decay spectra later reappeared,
connected tentatively with the development of density
irregularities in the plasma. These results, discussed in

FIG. 39. Temporal evolution of Langmuir frequency spectra
during long-pulse heating, from Arecibo observations (Cheung
et al., 1992): (a) 4 ms into the heater pulse; (b) 29 ms into the
heater pulse. The heater frequency is at 0 on the horizontal
axis.
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more detail by DuBois et al. (1996), were consistent with
the strong-turbulence picture outlined above.

It should be stressed that weak-turbulence theory can-
not predict the shapes of the spectra shown in Figs.
37–39 (DuBois et al., 1990; Hanssen et al., 1992; DuBois
et al., 1993a, 1993b). Hanssen et al. (1992) showed that
the condition (6.8) gave a good estimate of the fre-
quency (and hence height) offset for which decay-type
spectra will be seen for a given clamp-field strength.
They and DuBois et al. (1993b) also showed that the
decay cascade is truncated to only a few peaks, as pre-
dicted from strong-Langmuir-turbulence simulations,
whereas weak-turbulence theory would predict larger
numbers of decays (Hanssen et al., 1992; Stubbe et al.,
1992; DuBois et al., 1993b). Hence a decay cascade and
wave collapse can coexist, but the cascade does not usu-
ally extend to a k50 condensate. Rather, the gaps be-
tween the decay peaks fill in and a continuum is formed,
even where a cascade would kinematically be allowed
(Hanssen et al., 1992; DuBois et al., 1993b). Observa-
tionally, Cheung et al. (1992) always found a number of
decays consistent with the limit implied by Zakharov
simulations, and often less than that predicted by weak-
turbulence theory. Stubbe et al. (1992) also found only
two decay peaks in data from Tromsø. When the decay-
cascade condition of Eq. (6.8) is violated, continuum
spectra with free-mode peaks were seen in simulations
(Hanssen et al., 1992).

Additional evidence for the occurrence of strong tur-
bulence during ionospheric modification comes from the
ion-line backscatter spectra. These spectra correspond to
backscattering of the probe radar off low-frequency ion
sound waves [see Figs. 36(c) and 36(d)] and conse-
quently lie near the radar frequency vR . Weak-
turbulence theory predicts two peaks at vR6kSvS ,
where kS52kR is the wave number of the ion sound
wave responsible for the scattering. These peaks corre-
spond to scattering off downgoing and upgoing ion
sound waves, respectively. In the presence of strong tur-
bulence, a third peak centered at vR is predicted to ap-
pear, due to scattering off low-k density wells associated
with collapsing Langmuir packets (Hanssen et al., 1992;
DuBois et al., 1993a, 1993b). Djuth et al.’s (1994) ion-
line spectra showed such features, with a triple-line
structure generated at the same altitudes as the broad
continuum in the plasma line. No free-mode peaks were
seen, but Hanssen et al. (1992) and DuBois et al. (1993a)
showed that these would be unlikely to be visible be-
cause the frequencies of the probe radars used made
them unresolvable or placed them in a range where the
Langmuir waves would be heavily damped. Similar fea-
tures were seen at Tromso” by Frey (1986) and Stubbe
et al. (1992). At lower altitudes, only the two outer ion-
line peaks were seen, in conjunction with decay-type
spectra in the plasma line. These features were entirely
consistent with the predictions of strong-turbulence
theory (DuBois et al., 1993b).

Most of the above discussion refers to Arecibo obser-
vations, particularly those by Cheung et al. (1989, 1992).
Experiments with the EISCAT radars at Tromso” have
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also provided insights into the mechanisms in operation
during ionospheric modification, largely confirming
those obtained from Arecibo. Some of these results have
been discussed above, and further discussion is given by
DuBois et al. (1993b). Kohl and Rietveld (1996) have
recently published ion-line spectra from Tromso” that are
consistent with the occurrence of strong turbulence.

Before we conclude this section, a few further points
deserve mention: First, DuBois et al. (1990) and DuBois
and Rose (1991) studied the possibility that correlations
could develop between neighboring collapse sites, lead-
ing to novel spectral features resembling decay lines.
DuBois et al. (1991) found that the special conditions
required do not occur in ionospheric-heating experi-
ments, but that related effects may be significant under
less stringent conditions (DuBois et al., 1993b). Second,
backscatter decay peaks under strong-turbulence theory
are much wider (;40° half-angle) than in the weak-
turbulence approximation (;20°), possibly explaining
the experimental observability of backscatter spectra
over a wider angular range than would otherwise be ex-
pected (DuBois et al., 1990, 1993b).

G. Laser-plasma experiments

A laser beam incident on a region of increasing
plasma density will undergo reflection and resonant ab-
sorption, just as for waves in radio-plasma and
ionospheric-modification experiments. The principal
motivation for study of laser-plasma interactions arises
from attempts to achieve nuclear fusion by inertial con-
finement. In such experiments, a small (&0.1 mm in di-
ameter) pellet of fuel is compressed and heated by fo-
cused laser pulses with the aim of reaching fusion
conditions with Ne*1032 m 23 and Te*108 K (Richard-
son, 1991; Yamanaka, 1991; Campbell, 1992). Early in
compression, the fuel is ionized and the laser light heats
and compresses the resulting plasma. Other applications
are to x-ray lasers and novel particle accelerators
(Tajima, 1996).

Much of the theory and experimental work on laser-
plasma interactions has previously been reviewed
(Sodha et al., 1976; Kruer, 1988; Baldis et al., 1991;
Rubenchik and Zakharov, 1991; Campbell, 1992). Since
some of these reviews are recent, this paper concen-
trates on aspects in which ponderomotive forces, nonlin-
ear wave collapse (self-focusing), and/or strong turbu-
lence are thought to have a role.

Rubenchik and Zakharov (1991) discussed existing
experiments in which W reaches values of 0.01–0.1, or
even higher. A rich variety of nonlinear processes can
occur in laser-plasma interactions, including resonant
absorption, electrostatic decay, modulational instabili-
ties, stimulated Brillouin and Raman scattering, and
two-plasmon decay in which a transverse wave of fre-
quency vR'2vp decays into two Langmuir waves
(Kruer, 1988; Baldis et al., 1991; Campbell, 1992). Reso-
nant absorption near the critical layer can lead to
density-profile modification via the ponderomotive
forces of the Langmuir waves generated (as suggested in
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connection with ionospheric modification), possibly fol-
lowed by wave collapse or strong turbulence
(Rubenchik and Zakharov, 1991). Ponderomotive ef-
fects can also split the laser beam into filaments via the
so-called filamentation instability, in which a purely
growing transverse density perturbation is driven by the
electromagnetic ponderomotive force. The other pro-
cesses are important to various aspects of the laser-
plasma coupling, but will be largely ignored here for the
reasons stated above. Figure 40 summarizes some of the
main instabilities and their locations on the density pro-
file (Kruer, 1988).

As in radio-plasma and ionospheric-modification ex-
periments, resonance absorption can occur at the critical
layer in a laser-plasma system (Sec. VIII.E; Estabrook
et al., 1975; Kruer, 1988; Baldis et al., 1991; Gavrilov
et al., 1995). Manes et al. (1977) confirmed that the ab-
sorption is maximal for p-polarized light at an angle
where the wavelength equals the scale length along the
direction of propagation, consistent with theoretical cal-
culations by Thomson et al. (1978). Similar results were
found by Maaswinkel et al. (1979). Density-profile modi-
fication by the ponderomotive force of the resulting
Langmuir waves has been observed by Attwood et al.
(1978), who also observed cratering of the critical sur-
face at ‘‘hot spots’’ where the laser beam was more in-
tense than average. Langdon and Lasinski (1983) used
particle-in-cell simulations to show that density cavities
can be formed near the critical surface and the quarter-
critical surface where vR52vp , due to ponderomotive
forces. This can lead to self-trapping of electromagnetic
radiation, analogous to trapping of Langmuir waves in
beam-plasma and radio-plasma experiments.

Much effort has been spent on studying the pondero-
motive filamentation of laser beams in the underdense
region where vR.vp . In this process, T→T81S , inci-
dent electromagnetic waves T decay into product elec-
tromagnetic waves T8 plus purely growing transverse
density perturbations S in the region to the left of the
critical point in Fig. 40. Generation of the density per-
turbations is driven by the ponderomotive force of the
electromagnetic waves (Kruer, 1988; Amin et al., 1993;
Andreev et al., 1993; Chian and Rizzato, 1994) and the
result is self-focusing of the transverse waves into re-

FIG. 40. Schematic of the main physical processes in laser-
plasma interactions and their locations on the profile of
vp(x) vs x . The laser frequency is vR .
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gions of low density. This can result in the formation of
laser foci in the plasma if a minimum critical power den-
sity is exceeded (e.g., Kelley, 1965; Akhmanov, 1966;
Hora, 1969a, 1969b; Shearer and Eddleman, 1973;
Nicholas and Sajjadi, 1986; Rubenchik and Turitsyn,
1987; Schmitt, 1991; Berger et al., 1993). Alternatively,
in resonant filamentation (Joshi et al., 1982), two electro-
magnetic waves with frequencies much greater than vp
and a frequency difference of vp beat and excite Lang-
muir waves L , which are then amplified by stimulated
Raman scattering T→T81L . Then the ponderomotive
force of the Langmuir waves drives the density varia-
tions and the formation of filaments. This process can be
much more effective in forming filaments than direct
filamentation because the ponderomotive force of Lang-
muir waves is much stronger than that of transverse
waves, owing to their lower frequency [cf., the frequency
dependence in Eq. (2.11)]. Formation of a focus corre-
sponds to contraction of the filament to a singularity in
the transverse direction, a process that is analogous to
two-dimensional wave collapse. The minimum critical
power density for focusing is analogous to the collapse
threshold. We discuss these points further in Sec. IX.A.

Until recently, evidence for filamentation has been
relatively scarce and indirect (Kruer, 1988). Indirect evi-
dence has included observations of frequency shifts in
reflected light (Tanaka et al., 1984) and inferences from
structure in x-ray pictures of the heated plasma. Fila-
mentary structures have also been directly observed by
various techniques (Baldis and Corkum, 1980; Herbst
et al., 1981; Stamper et al., 1985; Young et al., 1988;
Wilks et al., 1994). An example is shown in Fig. 41,
showing high-density walls where material has been
pushed to the edges of a low-density filament (Wilks
et al., 1994). Joshi et al. (1982) obtained strong evidence
for resonant filamentation by using optical mixing of two
lasers to excite Langmuir waves at their difference fre-
quency. Raman scattering drove these waves to higher
intensity and their ponderomotive force then drove fila-
mentation.

If Langmuir waves generated by electromagnetic de-
cay T→L1S , two-plasmon decay T→L1L8, or Ra-

FIG. 41. Interferogram of laser-plasma experiment, showing a
density channel formed by the beam, walled by regions of high
density formed where material has been expelled from the
channel (Wilks et al., 1994).
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man scattering T→T81L reach a sufficiently high in-
tensity, Langmuir collapse can ensue. This can occur
either near the critical layer in Fig. 40 or in the under-
dense region to the left, depending on the process that
generates the Langmuir waves. Ultimately the state be-
comes turbulent if enough collapsing packets coexist
(Rose et al., 1987; Rubenchik and Zakharov, 1991;
Sagdeev et al., 1991; Kolber et al., 1993; Bezzerides et al.,
1993; DuBois et al., 1995b).

Baldis et al. (1978) saw profile steepening due to pon-
deromotive forces at the quarter-critical layer. Briand
et al. (1990) and Dahmani et al. (1991) found evidence of
Langmuir wave collapse near the critical density by ob-
serving second-harmonic spectra produced by Raman
scattering,

T1L→T8, (8.7)

where T denotes a pump wave, L a Langmuir wave, and
T8 a scattered second-harmonic wave. Figure 42 shows
an analyzed tracing of a time-dependent second-
harmonic spectrum obtained by Briand et al. (1990),
with time increasing toward the bottom and wavelength
toward the right. The wavelength corresponding to
emission at exactly twice the laser frequency vR is
marked L0. Initially, emission is seen at L1, correspond-
ing to Eq. (8.7) for Langmuir waves L produced slightly
below vR by the decay T→L1S , where S is an ion
sound wave. [This corresponds to emission of waves T8

FIG. 42. Analyzed tracing of a time-resolved second-harmonic
spectrum from a laser-produced plasma (Briand et al., 1990),
showing emitted wavelength L vs time t , with t increasing to-
ward the bottom.
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slightly below 2vR in Eq. (8.7), but a Doppler blueshift
connected to the experimental detection conditions
yields L1,L0 in this experiment (Briand et al., 1990).]
At low incident intensities (&1018 W m 22) this was the
only emission seen. At higher intensities, the plasmons
L underwent the electrostatic decay L→L81S8, pro-
ducing emission at L2 in Fig. 42. Briand et al. (1990)
discussed ponderomotive effects that would tend to
blueshift L2, but not L1, as seen in Fig. 42. At still
higher intensities, ;531019 W m 22, a spectral feature
L3 was observed to commence at L1, then redshift to
larger L , broadening during this phase, as seen in Fig.
42. It terminated quite suddenly and was followed by
another somewhat similar feature, labeled L in Fig. 42,
after a brief interval. Briand et al. (1990) argued that the
former feature was consistent with Langmuir collapse:
the redshift corresponded to the progressive downshift
in the frequency of collapsing Langmuir waves as their
density cavity deepened (see Sec. V.E), while the broad-
ening was attributed to dynamical effects proportional
to the central density depression. Dahmani et al. (1991)
found very similar high-intensity results to those of Bri-
and et al. (1990), except that they observed two bursts of
radiation subsequent to the main one, possibly con-
nected with collapse of two separate populations of
Langmuir waves.

While many aspects of the results of Briand et al.
(1990) and Dahmani et al. (1991) are consistent with
wave collapse, their estimate of a maximum density per-
turbation of DNe /Ne52331023 appears very small in
magnitude compared to typical values of *0.1 seen in
particle-in-cell simulations, for example (see Sec.
VII.B). Briand et al. (1990) suggested that this could
possibly have been due to a transition to supersonic col-
lapse, in which the density response is weaker.

More recently, Meyer and Zhu (1993) measured the
k-space distribution of Langmuir waves excited by the
two-plasmon decay instability, finding that the wave ac-
tivity spreads over a wide zone. Comparison with the
results of Zakharov-equation simulations (DuBois et al.,
1995b, 1996) showed good agreement for relevant driv-
ing parameters, with the simulations implying that this
regime is probably collapse dominated to account for
the broad k-space spectrum.

An important consequence of resonant absorption,
filamentation, and Langmuir collapse is the formation of
intense, localized, coherent fields on short scales. If elec-
trons from the ambient plasma can cross these structures
in a time of the same order as their oscillation period,
strong transit-time interactions will result. These inter-
actions can dissipate the fields rapidly (e.g., as seen in
the burnout phase shown in Fig. 42) and accelerate elec-
trons to form energetic tails (Friedberg et al., 1972; Mo-
rales and Lee, 1974; Valeo and Kruer, 1974; Bezzerides
and DuBois, 1975; Forslund et al., 1975; Ishida and Nish-
ikawa, 1975; DeNeef and DeGroot, 1977; Kovrizhnykh
and Sakharov, 1979; Rozanov and S̆humskiı, 1986, 1987;
Gavrilov et al., 1995; Melatos et al. 1996). Experiments
have observed such acceleration, attributed to accelera-
tion in resonance-absorption regions (Estabrook et al.,
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1975; Kruer, 1988; Baldis et al., 1991). These electrons
can impede compression of inertial confinement fusion
targets by penetrating and prematurely heating the core
of the target. Hot electrons unequivocally associated
with arrest of Langmuir collapse have not yet been ob-
served, so we leave discussion of this topic at this point.

IX. GENERALIZATIONS AND APPLICATIONS TO
RELATED SYSTEMS

Many of the ideas of Langmuir collapse and strong
turbulence are applicable to other nonlinear systems in-
volving waves in solids, fluids, and magnetized plasmas
in which magnetic effects dominate in wave collapse and
strong turbulence. Applications to optical systems, in-
cluding fiber optics, have been pursued for decades,
while space-plasma and auroral applications are more
recent. Astrophysical applications to date have been
very few, and this is a promising area for future investi-
gation, since systems abound in which energetic waves
are be generated (e.g., jets, shocks, pulsar magneto-
spheres). Other applications of related ideas have also
been made to the dynamics of deep-water waves, for
example.

This section outlines a variety of applications and po-
tential applications of the concepts of wave collapse and
strong turbulence, sketching relevant generalizations of
the theory where appropriate. Some of these applica-
tions have been the subject of extensive experimental
investigation, while others are still in rudimentary theo-
retical form. The emphasis here is primarily on the main
ideas and current status of the fields in question, rather
than on their historical development.

A. Nonlinear optics

Nonlinear optics has grown into a huge field since the
invention of the laser in 1960 provided a ready source of
high-intensity, near-monochromatic light. Some recent
texts on this subject include those by Shen (1984),
Butcher and Cotter (1990), Saleh and Teich (1991), and
Boyd (1992).

Nonlinear refractive-index enhancements by intense
electromagnetic waves were discussed in early papers by
Askar’yan et al. (1962), Chiao et al. (1964), and Kelley
(1965), for example, and it was noted that these en-
hancements could lead to self-focusing of a laser beam
because of the tendency of the waves to refract toward
the most intense region at the center of the beam. In
dielectrics, this effect can occur because of nonlinearities
in the response of atomic electrons to high fields, i.e.,
anharmonic restoring forces. In semiconductors, nonlin-
earities can be due to ponderomotive forces, energy-
dependent changes in carrier mobility, or localized heat-
ing of the charge carriers, leading to their expulsion
from the beam and a correspondingly lowered local
plasma frequency (Sodha et al., 1976). Such thermal non-
linearities can also be significant in laser-plasma interac-
tions (Perkins and Valeo, 1974; Kruer, 1985, 1988;
Schmitt, 1988, 1991, 1993; Baldis et al., 1991; Richard-
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son, 1991; Yamanaka, 1991; Ghanshyam and Tripathi,
1993). In laser-plasma contexts, the oscillation velocity
of particles in the laser field can be so great that their
relativistic mass increase gives rise to a significant en-
hancement of the refractive index by reducing the local
plasma frequency, since vp } me

21/2 (Akhiezer and
Polovin, 1956; Kaw and Dawson, 1970; Max et al., 1974;
Tsintsadze et al., 1979; Berezhiani et al., 1980; Kruer,
1988; Borisov et al., 1990; Brandi et al., 1993; Vladimirov
et al., 1995).

In many optical materials, the response of the medium
to changes in the optical fields is essentially instanta-
neous, and one can write the refractive index as

n5n01n2E2, (9.1)

where n0 and n2 are constants, with n2 embodying the
effects discussed in the previous paragraph. Such media
are termed Kerr media. Assuming steady-state propaga-
tion in the z direction in a Kerr medium, the only case
considered here, and slow amplitude variations in the
z direction, one can write the electric field E in terms of
a slowly varying envelope E (see Sec. II.B)

E5E~z ,R!ei~kz2vt !, (9.2)

where R denotes the pair of coordinates perpendicular
to the z axis. One then finds the nonlinear Schrödinger
equation obeyed by the envelope

2ik
]E
]z

2¹'
2 E5

n2

h0
k2uEu2E, (9.3)

with h05(m0 /e0)1/2'377V (Saleh and Teich, 1991).
Note that this equation is of the same form as the two-
dimensional version of the nonlinear Schrödinger equa-
tion (2.20), with z/2k playing the role of time.

If the waves are initially plane polarized, Eq. (9.3) can
be reduced to a scalar equation for a single-component
field, which can be regarded as the linear eigenfunction
of a refractive-index structure of magnitude }uEu2. In-
deed, this is by far the most commonly used approxima-
tion in nonlinear optics. Another common simplification
is to separate the solution into the product of a part that
depends only on R and a part that is a function only of
z . This approximation is rigorously justified in optical
fibers, for example, where the fiber boundaries reduce
the problem to strictly one-dimensional propagation of
modes with transverse structure (however, there is no
transverse self-focusing in this case). In other cases, it is
only valid if the transverse structure of the beam is
slowly changing.

Equation (9.3) has been extensively used to study op-
tical self-focusing in dielectrics, semiconductors, and
plasmas. It has been shown that self-focusing occurs for
beam powers exceeding a critical value

Pcrit'
~1.22l!2c

128n2
, (9.4)

for a laser wavelength l (Chiao et al., 1964; Kelley, 1965;
Sodha et al., 1976; Shen, 1984), this value being analo-
gous to the collapse threshold derived in Sec. V.D, since
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P}uEu2a2, where a is the radius of the beam. Geometric
optics and virial-type analyses similar to those yielding
Eqs. (4.11) and (4.12) have been used to estimate the
focusing distance zc (Kelley, 1965; Akhmanov et al.,
1966; Hora, 1969a, 1969b; Lugovo� and Prokhorov, 1973;
Sodha et al., 1976). Considerable theoretical effort has
been devoted to studying axisymmetric beams, some-
times following them through several foci, with the ad-
dition of dissipative processes—including large-angle
scattering that removes energy from the beam—to Eq.
(9.3) to prevent the formation of singularities (Dyshko
et al., 1972). It has also been shown that a beam with
N times the critical power will break into ;N filaments.
Figure 43 contains results obtained by Campillo et al.
(1973), showing the breakup of a broad beam into nu-
merous filaments in a cell filled with carbon disulfide.
Self-focusing can lead to permanent damage to solid di-
electrics and to bubble formation in liquid ones, owing
to the high focal intensities attained. Dissipation of the
filaments at the end of collapse can be through true dis-
sipation and heating of the medium or simply through
scattering of the light to large angles at which it escapes
from the beam.

One problem that does not appear to have been stud-
ied analytically in the literature is the evolution of an
initially supercritical beam that breaks into many fila-

FIG. 43. Experimental results for the pattern of focal spots for
a laser beam in carbon disulfide, with intensity increasing to-
ward the bottom (from Campillo et al., 1973). Some extrane-
ous spots outside the focal region in the original figure have
been removed.
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ments, which then focus, partly dissipate, then refocus at
larger z . Such a system is mathematically equivalent to
undriven 2D strong turbulence governed by the nonlin-
ear Schrödinger equation, with z playing the role of
time; it is also potentially relevant to laser-plasma and
laser-solid systems. The possibility of testing strong-
turbulence theory using laser-solid interactions is an at-
tractive one, since these systems are often more easily
diagnosed than plasma systems. Robinson and Newman
(1991b) developed a two-component theory of strong
turbulence governed by the nonlinear Schrödinger equa-
tion, analogous to the theory discussed in Sec. VI for
turbulence subject to the Zakharov equations. They
found that the energy density in undriven turbulence
decays according to

^uEu2&}z2r (9.5)

at large z , where r is a ratio of small integers. They were
unable to determine the value of r theoretically because
there is as yet no detailed theory of the formation of
coherent wave packets within the nonlinear Schrödinger
equations (see below), but found numerical values very
close to 1/3 or 2/5 in two dimensions, depending on the
level of ^uEu2&. If experimentally observable, the power-
law decay in Eq. (9.5) of the intensity of a laser beam
would provide an important test of the theory and nu-
merical calculations.

It is perhaps paradoxical that the theory of turbulence
governed by the nonlinear Schrödinger equation is less
developed than that for the Zakharov equations. The
reason is that the nonlinear refractive index changes on
the same time scale as the electric-field envelope in the
nonlinear Schrödinger equation, whereas inertia in the
second Zakharov equation leads to the appearance of
remnant refractive-index enhancements (density wells in
the plasma case; see Sec. V.G) after burnout of a col-
lapsed field. In the latter case, it is straightforward to
determine the statistics of trapped fields that are deriv-
able from a potential, i.e., E52¹F (Newman et al.,
1989, 1991), but more work needs to be done if E is not
curl free. Signs of nucleation have been seen in simula-
tions of the nonlinear Schrödinger equation (Newell
et al., 1988a, 1988b), but no detailed theory exists. Rob-
inson and Newman (1991b) have interpreted changes of
exponents in the scaling of nonlinear Schrödinger equa-
tion turbulence to changes in the mechanism of wave-
packet formation. For example, in some regimes, pack-
ets may form from random fluctuations in an incoherent
field, and the statistics of random fields would then de-
termine the distribution of packet structures (Rose and
DuBois, 1993a, 1993b). In any event, further develop-
ment of these ideas is needed to understand the field
statistics. Propagation of lasers in solids or liquids pro-
vides a promising testing ground for any theoretical de-
velopments in this area.

Going beyond the nonlinear Schrödinger equation, it
is possible to include inertia in the response of the re-
fractive index to variations in the electric field. This in-
ertia can be due to the nonzero mass of the particles that
must respond, as in plasmas, thus leading to Zakharov-
Rev. Mod. Phys., Vol. 69, No. 2, April 1997
like equations (Rose and DuBois, 1993b; Rose, 1995).
Alternatively, thermal inertia may be significant, due to
the nonzero heat capacity of the material. Thermal iner-
tia leads to a separate equation for the temperature re-
sponse, analogous to the low-frequency Zakharov equa-
tion (2.18), but involving the thermal conductivity and
heat capacity, rather than ion-sound-wave quantities
(Sodha et al., 1976; Schmitt, 1988, 1991, 1993; Kruer,
1988). Equations of these types have been extensively
applied to laser-plasma interactions (see Sec. VIII.C), in
which thermal and/or ponderomotive self-focusing can
be significant. The general ideas developed for testing
the stability of fields within the Zakharov equations can
be expected to be of use in analogous optical problems.
Self-similar collapse solutions are also of relevance to
description of self-focusing. Other types of nonlineari-
ties that have been studied recently include one relevant
to self-written waveguides in which photons cause
gradual buildup of damage to a material, leading to a
permanent refractive-index change. In a somewhat more
general case, in which the refractive-index change re-
laxes on a characteristic time scale t , one has (Shen,
1984)

]n2

]t
}uEu22

n2

t
. (9.6)

Stability and evolution of such waveguides can be stud-
ied using methods analogous to those employed for the
Zakharov equations. See, for example, Kuznetsov et al.
(1986).

B. Generalizations to magnetized plasmas

An obvious direction in which to generalize the
theory of Langmuir collapse is to incorporate the effects
of an ambient magnetic field on the dispersion of the
linear waves, the ponderomotive force, and dissipation
mechanisms, particularly where these effects dominate
during wave collapse. Such generalizations have been
carried furthest in the case of upper-hybrid and lower-
hybrid waves, but Alfvén, whistler, and other waves
have also been considered. Some applications of these
generalizations are considered in Sec. IX.C.

1. Upper-hybrid waves

Upper-hybrid (UH) waves are high-frequency waves
in a magnetized plasma that reduce to Langmuir waves
in the limit that the magnetic field B vanishes. Their
dispersion relation is

v25vp
213k2Ve

21
Ve

2vp
2

vp
22Ve

2sin2u , (9.7)

where Ve5eB/me is the electron cyclotron frequency
and u is the angle between k and B. If Ve

2/vp
2!1, mag-

netic effects on the low-frequency waves can be ne-
glected and the dispersion relation (2.1) remains a good
approximation. Assuming a magnetic field along the z
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axis, Lipatov (1977) wrote down dimensionless equa-
tions for the envelope potential F . These equations
were equivalent to

¹2~ iF t1¹2F!2s¹'
2 F5¹•~n¹F! (9.8)

for the high-frequency oscillations, with Eq. (2.18) as-
sumed for ion sound waves with ĝS50; here,
s5Ve

2/2vp
2 for vp

2@Ve
2 and ¹' is the component of the

gradient operator perpendicular to the z axis, which de-
notes the parallel direction in what follows.

Almost all analysis of upper-hybrid collapse and
strong turbulence has been carried out using the adia-
batic limit for the density response, in which
n52u¹Fu2. However, some numerical work has solved
Eqs. (9.8) and (2.18). It can be shown that upper-hybrid
wave packets are unstable to collapse if they exceed a
threshold of the form Wl i

2/lD
2 5Q and that they follow

self-similar collapse scalings (Krasnosel’skikh and Sotni-
kov, 1977; Lipatov, 1977; Shapiro and Shevchenko, 1984;
Kuznetsov et al., 1986; Kuznetsov and S̆korić, 1988a,
1988b; Hadz̆ievski et al., 1990; Robinson, 1996a). Kuz-
netsov and S̆korić (1988a, 1988b) showed that the
fastest—and hence dominant—collapse would be sub-
sonic and weak, not energy conserving, a point con-
firmed by numerical calculations by Hadz̆ievski et al.
(1990). Moreover, nucleation tends to result in oblate
wave packets, having E predominantly parallel to B,
that flatten further as they collapse (Kuznetsov and S̆ko-
rić, 1988a, 1988b; Robinson, 1996a). Robinson (1996a)
termed such collapse oblate collapse and showed that it
was characteristic of a broader range of wave equations.
It contrasts with his class of isotropic-collapse models, in
which the parallel and perpendicular spatial scales of a
wave packet contract in proportion to one another, as
typified by Langmuir collapse. Robinson, Melatos, and
Rozmus (1996a, 1996b) and Melatos and Robinson
(1996) discussed arrest of upper-hybrid collapse via
transit-time interactions.

Lipatov (1977) studied the collapse of a single upper-
hybrid wave packet using Eqs. (9.8) and (2.18) without
damping. Likewise, using 2D simulations that incorpo-
rated a weak magnetic field, Goldman et al. (1981)
showed that random upper-hybrid turbulence will
evolve into oblate collapsing wave packets. They also
showed that this collapse can be delayed relative to un-
magnetized collapse. Note that weak magnetic fields
were actually incorporated in some of the applications
discussed in Sec. VIII to perturb away from the unmag-
netized case; the relevant waves could be termed weakly
magnetized Langmuir waves, since magnetic effects
were not dominant in collapse.

Akimoto (1989, 1995) and Pelletier et al. (1988)
showed that the nature of upper-hybrid parametric in-
stabilities changes profoundly for Ve.vp , where the
last term in Eq. (9.7) changes sign, arguing that a phase
transition occurs in strong Langmuir turbulence at the
point Ve5vp , with little role for collapse in the high-
B limit. Newman et al. (1994a) confirmed this point nu-
merically for D52, with the addition of damping to Eq.
(9.8), showing that beam-driven turbulence will only cas-
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cade to form a condensate for Ve,vp ; otherwise,
damping truncates the cascade and strong turbulence is
not observed. For Ve,vp they observed turbulence
consisting of oblate collapsing wave packets amid a sea
of propagating Langmuir waves, closely analogous to
the case of Langmuir turbulence (see Sec. VI). It should
be noted that, in the case Ve.vp , the branch of the
dispersion given by Eq. (9.7) actually connects continu-
ously to the lower-hybrid dispersion curve. Thus, in this
case, it is more appropriate to speak of magnetized
Langmuir turbulence than upper-hybrid turbulence.
Robinson (1996a) developed a two-component model of
strong turbulence involving oblate collapse. Restricting
attention to Ve,vp , or cases in which the condensate
or collapsing packets are driven directly, he found the
scalings listed in the fifth column of Table III. Scalings
for isotropic collapse are given in the third column for
comparison.

2. Lower-hybrid waves

Magnetized plasmas also support lower-hybrid (LH)
waves near the lower-hybrid frequency vLH , with
vLH'vp(me /mi)

1/2 for Ve@vp and
VLH'Ve(me /mi)

1/2 in the opposite limit (Melrose,
1986a). Musher and Sturman (1975), Sturman (1976),
and Sotnikov et al. (1978) derived Zakharov-type equa-
tions for the nonlinear interaction between lower-hybrid
waves and ion sound waves, taking into account mag-
netic modifications to the ponderomotive force (for
more recent work on this topic, see Lamb et al., 1983).
In dimensionless form, these can be written in terms of
the potential F as

¹'
2 ~ iF t1¹'

2 F!2rFzz5i~¹F3¹n !z , (9.9)

]2n

]t2 2¹2n5i¹2u¹F* 3¹Fuz , (9.10)

where damping has been omitted for simplicity and
r;(mi /me)1/2 is a constant. Most theoretical investiga-
tions of lower-hybrid collapse and turbulence have used
the adiabatic approximation in which
n52iu¹F* 3¹Fu. Tam and Chang (1995) noted impor-
tant limitations to the use of Eqs. (9.9) and (9.10) in two
dimensions, arguing that some essential terms have been
omitted in that case.

Musher and Sturman (1975) showed numerically that
lower-hybrid waves can collapse, in accord with theo-
retical analyses (Sturman, 1976; Shapiro and
Shevchenko, 1984; Kuznetsov et al., 1986), which yielded
a threshold of the form Wl'

2 /lD
2 5Q . Initial wave pack-

ets tend to be prolate, with their long axes along B and
their electric fields primarily perpendicular to B. Kuz-
netsov and S̆korić (1988a, 1988b) showed that the fastest
collapse is weak, subsonic collapse, with progressively
increasing elongation as collapse continues. Robinson
(1996a) termed such collapse prolate and showed that it
was representative of collapse under a broader range of
wave equations, complementing the other classes of iso-
tropic and oblate collapse. Using the nucleation picture,
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TABLE III. Scalings A;BC in isotropic, prolate, and oblate wave collapse and strong turbulence,
assuming the fastest collapse scenario and m51 (after Robinson, 1996a). Notes: (1) inertial range;
(2) steady-state turbulence; (3) small kb ; (4) large kb ; (5) relaxation of undriven turbulence; (6)
additional factor of ln(Wf /^W&) in the 2D isotropic case; (7) E,^W&; (8) ^W&,E,^W&1/2; (9) the
result in the third column corrects a misprint in Robinson’s (1996a) table.

A B C (Isot.) C (Prol.) C (Obl.) Notes

l i t 1/2 1 1/2 1
l' t 1/2 1/2 1 1
minli,' t 1/2 1/2 1/2 1
F0 t 0 0 0 1
E0 t 21/2 21/2 21/2 1
N t (D22)/2 (D21)/2 (2D23)/2 1
NP ^W& D/2 (D11)/2 (2D21)/2 2
T ^W& 21 21 21 2
U ^W& 0 0 0 2
Pout ^W& (D12)/2 (D13)/2 (2D11)/2 2
^W& G 2/D 2/(D11) 2/(2D21) 2,3
^W& G 4/(D12) 4/(D13) 4/(2D11) 2,4
^W& t 22/D 22/(D11) 22/(2D21) 5
^n2& ^W& 2 2 2 2,6
P(E) E 2D21 2D21 2D21 2,7
P(E) E 2D21 2D23 1 2,8
P(E) E 2(D12) 2(D13) 2(2D11) 1,2
P(n) n 2(D13)/2 2(D14)/2 2(D11) 1,2
W(k) k i 22D 2(D11) 22(2D11) 1,2
W(k) k' 22D 22(D12) 2(2D11) 1,2,9
un(k)u2 k i 22(D21) 2D 24(D21) 1,2
un(k)u2 k' 22(D21) 22D 22(D21) 1,2
he also developed a two-component model of strong
lower-hybrid turbulence, which yielded the scaling expo-
nents given in the fourth column of Table III. Shapiro
et al. (1993, 1995) carried out extensive simulations of
wave collapse and strong lower-hybrid turbulence. They
confirmed theoretical predictions of prolate wave pack-
ets in two and three dimensions, followed collapse and
arrest, and observed renucleation in turbulence. Robin-
son, Melatos, and Rozmus (1996a) showed analytically
that the parallel scale of lower-hybrid collapse is so great
that it is difficult for these packets to reach their self-
similar form, a result that is also relevant to the perpen-
dicular scale of collapsing upper-hybrid packets. They
and Melatos and Robinson (1996) also showed that the
arrest of such packets is the result of close competition
between transit-time damping by ions and electrons,
with the dominant mechanism depending on the precise
axial ratio of the collapsing packet (Melatos and Robin-
son, 1996).

3. Other generalizations

A range of other systems can exhibit wave collapse
and strong-turbulence effects, but space permits only the
briefest of mentions here. For example, systems with
higher-order nonlinearities, such as n}uEu4, can exhibit
collapse (Zakharov, Kosmatov, and Shvets, 1989). A
second example is the system of Taniuti and Washimi
(1968), involving coupled plasma hydromagnetic waves,
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in which modulational instabilities were found. Hase-
gawa (1970) studied modulational instabilities of
coupled cyclotron and magnetohydrodynamic waves in
plasmas. Karpman and Stenflo (1988) showed that a sys-
tem consisting of whistler and magnetosonic waves sat-
isfies the nonlinear Schrödinger equation in an appropri-
ate limit. Spangler and Sheerin (1982, 1983) investigated
soliton formation and collapse of Alfvén waves in astro-
physical contexts. Kuznetsov et al. (1986) and Relke and
Rubenchik (1988) also discussed interaction of high- and
low-frequency waves in magnetized plasmas in some de-
tail. Stenflo and Shukla (1990) investigated modulational
instability and nucleation of Langmuir waves in weakly
ionized plasmas.

Leaving plasma physics and optics, Benjamin and Feir
(1966) showed that trains of deep-water waves were
modulationally unstable. Davey and Stewartson (1974)
showed that surface waves on water of finite depth sat-
isfy Zakharov-like equations and hence are also subject
to modulational instability. Two-dimensional instabili-
ties of plane waves have been studied by Laedke et al.
(1982) and Blaha et al. (1987).

C. Applications to magnetized plasmas

We now turn briefly to some recent applications of the
magnetized-plasma generalizations of Langmuir wave
collapse and strong turbulence discussed in Sec. IX.B.
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1. Auroral applications of lower-hybrid waves

Intense packets of lower-hybrid waves, often localized
in density depressions, have been observed at auroral
latitudes by the Viking and Freja satellites and sounding
rockets such as TOPAZ 3, at altitudes ranging from 500
to 13 000 km (Pottelette et al., 1988, 1992; Arnoldy et al.,
1992; Kintner 1992; Kintner et al. 1992; Vago et al., 1992;
Dovner et al., 1994; Eriksson et al., 1994; Lynch et al.,
1994). These waves appear to be localized in elongated
structures, aligned with the magnetic field, with electric
fields primarily perpendicular to B. The waves are elec-
trostatic and their frequency is reduced inside density
cavities, consistent with trapping in localized eigen-
modes.

Theories based on lower-hybrid solitons have ex-
plained some aspects of particle acceleration in the au-
roras (Retterer et al., 1986, 1994; Chang, 1993; Lynch
et al., 1994), but there is controversy over various as-
pects of the theories advanced and their relationship to
observations. Specifically, some theories have assumed
that the density depressions are the result of pondero-
motive pressure of the localized lower-hybrid waves;
however, it does not appear that the ponderomotive
force is great enough to produce the observed depres-
sions (Singh, 1994; Shapiro et al., 1995; Robinson, Mela-
tos, and Rozmus, 1996a, 1996b). Alternative theories
have been advanced, in which the lower-hybrid waves
nucleate in preexisting density depressions formed by
some other mechanism (Robinson and Rozmus, 1994;
Seyler, 1994; Singh, 1994; Robinson, Melatos, and Roz-
mus, 1996a, 1996b). Alternatively, it has been suggested
that many collapses at a given site may ultimately
deepen the density well to the observed levels, or that
the discrepancy is the result of very large inaccuracies in
density measurements (Shapiro et al., 1995).

Robinson, Melatos, and Rozmus (1996b) recently re-
examined the relationship between wave-collapse theory
and in situ observations of localized lower-hybrid waves
associated with density depressions. They found that the
observed packets all matched or exceeded the predicted
collapse threshold for lower-hybrid waves, while their
observed scale lengths also lay between the predicted
nucleation and arrest scales. Inconsistencies with theory
were that the size of the density perturbations was far
too large to be accounted for by the ponderomotive
force of the lower-hybrid waves, and a theoretical pre-
diction of equal numbers of positive and negative den-
sity perturbations (Shapiro et al., 1993; Robinson, Mela-
tos, and Rozmus, 1996a, 1996b) was not borne out by
observations, which were dominated by density depres-
sions. They concluded that, if wave collapse occurs, it
commences with packets that have nucleated in wells
produced by a mechanism other than the ponderomo-
tive force of the trapped lower-hybrid waves themselves
although this mechanism may be triggered by the
trapped waves, as was Singh’s (1994), mechanism. Fur-
ther work is necessary to identify the mechanism that
produces the observed depressions (or, alternatively,
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gross inaccuracies in the density measurements), and
this field remains highly controversial.

Another open question in auroral physics is how to
explain the 100-m scale of the finest auroral arcs, pro-
duced by localized downgoing streams of accelerated
electrons (McFadden et al., 1990; Borovsky, 1993).
Borovsky (1993) showed that none of 22 mechanisms he
considered could explain this minimum scale. Lynch
et al. (1994), Robinson and Rozmus (1994), and Robin-
son, Melatos, and Rozmus (1996b) showed that lower-
hybrid collapse could produce scales of this order at ar-
rest, simultaneously accelerating electrons.
Alternatively, lower-hybrid collapse may modulate a
concurrently operating acceleration mechanism on
scales similar to the arrest scale. This appears to be a
promising area for further investigation.

2. Auroral and coronal applications of upper-hybrid waves

In auroral regions and the lower solar corona, the
electron cyclotron frequency can be of the same order as
the plasma frequency. Under such circumstances, mag-
netic effects on Langmuir dispersion are strong and it is
more appropriate to consider the behavior of upper-
hybrid waves excited, for example, by beam instabilities.
Type-III electron beams must propagate through the
lower corona, where Ve*vp can be satisfied, before
reaching interplanetary space (see Fig. 31). Similarly, in-
tense streams of accelerated electrons have been ob-
served in auroral regions (McFadden et al., 1990), where
Ve*vp , simultaneously with enhanced levels of waves
near the plasma frequency.

Newman, Goldman, and Ergun (1994a, 1994b), New-
man, Goldman, Ergun, and Boehm (1994), and Gold-
man and Newman (1994) simulated beam-driven upper-
hybrid turbulence, using Zakharov-type equations, for
various values of Ve /vp . They found that strong turbu-
lence is only relevant to cases with Ve,vp , consistent
with the results of Pelletier et al. (1988) and Akimoto
(1989, 1995). In the opposite case, the waves are magne-
tized Langmuir waves rather than upper-hybrid waves,
the decay cascade is truncated, and modulational insta-
bility is suppressed (see Sec. IX.B). Newman, Goldman,
and Ergun (1994a) noted that this occurs in part be-
cause, unlike the usual Langmuir waves, magnetized
Langmuir waves are not necessarily trapped by density
depressions for vp,Ve , owing to the dependence of
their frequency on u in Eq. (9.7). Under coronal condi-
tions, highly oblate collapsing wave packets were seen in
Newman et al.’s (1994a) simulations for Ve,vp (New-
man, Goldman, Ergun, and Boehm, 1994). The collapse
of these packets was assumed to be arrested primarily by
electron transit-time damping. The central electric fields
of these packets were predominantly in the direction of
the magnetic field, consistent with observations. In the
auroral case, the existence of an extended suprathermal
background distribution was found to truncate the decay
cascade before a condensate could develop, thereby pre-
cluding collapse even for Ve,vp (Newman, Goldman,
and Ergun, 1994a). Realistic parameters could then ac-
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count for the observed levels of upper-hybrid waves
(Newman, Goldman, Ergun, and Boehm, 1994).

3. Astrophysical applications of upper-hybrid waves

To date, the main proposed applications of strong
Langmuir turbulence outside the solar system have been
to pulsar magnetospheres and astrophysical jets, chiefly
with a view to explaining observed electromagnetic
emission. Pelletier et al. (1988) noted that beam-
generated Langmuir waves are also likely to be impor-
tant in contexts as varied as active galactic nuclei, close
binaries, cataclysmic variables, and gamma bursters.
They argued that strong turbulence is likely to be rel-
evant in at least some of these situations, owing to the
highly energetic nature of the phenomena involved.
They further argued that magnetic effects are likely to
be important in many of these contexts. However, as
yet, there has been little observational evidence bearing
on astrophysical strong turbulence.

Pelletier et al. (1988) studied the collapse of upper-
hybrid waves in magnetized plasmas, arguing that modu-
lational instabilities and wave collapse can saturate the
growth of beam-driven Langmuir waves, thereby allow-
ing the beam to propagate further than would otherwise
be the case. This is closely analogous to some proposed
resolutions of Sturrock’s dilemma for type-III electron
beams emitted by the Sun (see Sec. VIII.C). It is thus
necessary also to take into account the possibility that
stochastic growth of waves in an inhomogeneous me-
dium can accomplish the same result, greatly extending
the beam penetration distance, as in the type-III case
(Robinson, 1992; Robinson, Cairns, and Gurnett, 1992,
1993; Robinson, Willes, and Cairns, 1993; Robinson
1995, 1996b). Stochastic-growth theory has proved to
yield much better agreement with observations in the
type-III case than strong-turbulence theories, but the
two theories are not mutually exclusive, as pointed out
by Robinson (1995), who discussed incorporation of
wave collapse into stochastic-growth theory. A further
prediction by Pelletier et al. (1988) was that there should
be a sudden onset of strong upper-hybrid turbulence
where a beam leaves a strong-field region and enters one
with Ve,vp .

Laboratory electron-beam experiments (Kato et al.,
1983; Benford and Weatherall, 1992) have long shown
enhanced electromagnetic emission under conditions as-
sociated with strong turbulence (see Sec. VIII.B). New-
man (1985), and Benford and Weatherall (1992) inter-
preted this radiation as the result of Compton boosting
of a beam-generated Langmuir wave into an electro-
magnetic wave via scattering of an electron off a coher-
ent wave packet. Baker et al. (1988) argued that such
interactions could provide an alternative to the usual
incoherent synchrotron mechanism to explain emission
from some astrophysical jets. However, it does not seem
that detailed tests of this proposal have been undertaken
as yet.

Early work on Langmuir waves in strongly magne-
tized electron-ion and electron-positron plasmas, under
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conditions relevant to pulsar magnetospheres, was re-
viewed by ter Haar and Tsytovich (1981). This work
centered on the physics of one-dimensional solitons, be-
cause the magnetic fields are so strong (up to 108–109 T)
that particle dynamics are essentially one-dimensional,
owing to rapid loss of any perpendicular momentum
through cyclotron emission. Other work has since been
done by Chian and Kennel (1983), Verga and Fontan
(1985), Asseo et al. (1990), and Asseo (1993). For ex-
ample, using a 1D formulation, Asseo et al. (1990) and
Asseo (1993) discussed emission mechanisms involving a
collection of stable quasi-one-dimensional wave packets
in a pulsar magnetosphere. However, as these mecha-
nisms do not involve collapse, they are not considered
further here.

4. Other space and laboratory applications

Weak magnetization of Langmuir waves was incorpo-
rated into a number of studies of type-III solar radio
sources, ionospheric-modification experiments, and
laboratory beam-plasma experiments, as discussed in
Sec. VIII. ter Haar and Tsytovich (1981) discussed a
number of proposed applications of strong turbulence to
type-I, type-II, and type-IV solar radio bursts and to
solar flares; however, the mechanisms proposed have
been largely superseded by theories that do not involve
wave collapse or strong turbulence, so these applications
are not discussed further here. Section VIII.C briefly
mentioned the possible occurrence of Langmuir turbu-
lence generated by beams emitted from shock waves as-
sociated with type-II bursts.

Antipov et al. (1979) produced highly oblate upper-
hybrid solitons in a strongly magnetized beam-plasma
system with an effectively 1D geometry. They found
fractional density perturbations of up to 0.3 on a scale
length of (5–6)lD , in fair agreement with values from
theory. Their solitons were stationary with respect to the
plasma and were observed to form by steepening of lin-
ear parent waves, consistent with the action of a modu-
lational instability and similar to the behavior of the
Langmuir waves seen in Fig. 29.

Christiansen et al. (1981) observed upper-hybrid
modulation forming highly prolate structures aligned
parallel with the magnetic field in a beam-plasma device.
The approximate parallel and perpendicular scales were
20 mm and 1 mm, respectively, and associated density
depletions were also observed, consistent with a theory
of upper-hybrid filamentation by Dysthe et al. (1978).
These packets do not correspond to the oblate, collaps-
ing solutions discussed in Sec. IX.B and found in simu-
lations.

Magnetized beam-plasma experiments were carried
out by Vyacheslavov et al. (1995) in a regime with
vp.Ve , but where the magnetic term in Eq. (9.7)
greatly exceeded the thermal one. They found a beam-
driven wave spectrum strongly aligned with the beam, as
expected from linear theory, with an approximately iso-
tropic spectrum of nonresonant waves that contained
roughly 30% of the wave energy. The values of W for
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beam-resonant and nonresonant waves were 0.07 and
0.17, respectively, greatly exceeding the modulational in-
stability threshold for transverse perturbations and
pointing to the likelihood of wave collapse, possibly di-
rectly from the beam-driven waves.

Vyacheslavov et al. (1995) noted that the dispersion of
the beam-driven waves (at very low k) is magnetized,
despite vp@Ve being satisfied. However, Robinson and
Newman’s (1990a, 1990c) analyses imply that the char-
acteristic nucleation wave number is substantially larger
than the beam-driven one in this case and that the dis-
persion is essentially unmagnetized at that value of k
[see Eqs. (5), (7), and (8) of Robinson and Newman
(1990c) for the relevant criteria]. This difference is im-
portant when we note that power-law wave-number
spectra were observed at large wave numbers, as would
be expected from wave collapse, consistent with
W(k');k'

23.6 and W(k i);k i
24.1 approximately. These

spectra are not as steep as the ones in Table III, for any
of the three classes of collapse. However, they are near-
est by far to the exponent of 26 predicted for isotropic
(unmagnetized) collapse in three dimensions. The cause
of the discrepancy is as yet unresolved, but it appears
that despite the strong magnetic fields used in this ex-
periment (2.5 T) wave collapse is not strongly magne-
tized.

Fast electron heating was also observed by Vy-
acheslavov et al. (1995), a possible signature of arrest.
There are clearly strong signs of wave collapse and
strong turbulence in these experiments, but more work
needs to be done to compare observations and theory in
detail. One important point, mentioned by Vy-
acheslavov et al. (1995), is that the mean values of W are
so high that standard strong-turbulence theory may be
significantly modified, e.g., owing to localized heating.

X. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has reviewed the physics and applications
of wave collapse (or self-focusing) and strong turbu-
lence, concentrating chiefly on the simplest example of
unmagnetized Langmuir waves interacting with low-
frequency ion sound waves in a plasma. This system is
simple enough that the main features of its physics are
now understood, but complex enough that it gives valu-
able insights into analogous processes operating in other
contexts. These insights have already proved useful in
understanding some other strongly nonlinear systems,
such as those involving upper-hybrid and lower-hybrid
waves, and much wider application appears possible.
Some other wave systems reviewed in less detail include
those of nonlinear optics, magnetized-plasma waves, and
deep-water waves. Applications to a variety of fields
have been reviewed, emphasizing tests of the basic the-
oretical picture, cases in which this picture has suc-
ceeded in giving an improved account of experimental
results, and situations where strong turbulence or wave
collapse has been seriously investigated, but found to be
inapplicable.
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Two extremely important areas that have been
scarcely touched on in this review are those of particle
acceleration in strong turbulence and secondary emis-
sion processes involving localized wave packets: (i)
Wave-particle interactions seem to be chiefly respon-
sible for the arrest of wave collapse. In addition, they
can give rise to strong acceleration of electrons and the
production of superthermal tails on the plasma distribu-
tion. Such electrons can be important in arresting col-
lapse, since they interact most strongly with other pack-
ets. Transit-time acceleration may also account for some
observations of accelerated particles in a range of natu-
ral and laboratory situations, including laser-plasma ex-
periments, beam-plasma devices, and the auroral iono-
sphere. (ii) Interactions of waves and particles with
localized wave packets are of great interest in connec-
tion with nonlinear emission mechanisms. For example,
relativistic-beam electrons can scatter localized Lang-
muir waves to produce high-frequency electromagnetic
emission. Raman and Brillouin scattering are important
in the interpretation of ionospheric modification experi-
ments, and enhanced fundamental (v'vp) and har-
monic (v'2vp) electromagnetic emission are possible
owing to the intense coherent fields in localized wave
packets. A host of applications of these and related pro-
cesses exist, in both the laboratory and naturally occur-
ring situations.

In this section we briefly recapitulate the main points
discussed in earlier sections, list some open questions,
and mention some promising directions for future re-
search.

A. Main results

Some of the most significant theoretical results on
Langmuir turbulence to emerge, beginning with Za-
kharov’s (1972) original paper on Langmuir collapse,
are as follows:

(i) The discovery that modulational instability of two-
and three-dimensional Langmuir wave packets does not
saturate with the formation of solitons, but that these
solitons are unstable with respect to wave collapse if
their intensity exceeds a threshold (Secs. IV.A, V.D, and
V.E).

(ii) The existence and importance of self-similar solu-
tions, with simple temporal scalings. These solutions al-
low the treatment of collapse to be greatly simplified
and are heavily exploited in statistical theories (Sec.
V.E).

(iii) The correspondence between collapsing wave
packets and Langmuir eigenstates localized in the asso-
ciated density well, analogous to the correspondence be-
tween discrete eigenstates of the one-dimensional non-
linear Schrödinger equation and solitons (Secs. IV.A,
V.A, and V.B). This provides the basis for treating these
states as nonlinear building blocks when constructing
theories of strong turbulence (Sec. VI), just as solitons
augment plane waves to provide a description of solu-
tions of the one-dimensional nonlinear Schrödinger
equation.
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(iv) The nucleation mechanism of wave-packet forma-
tion, in which states localized in remnant density wells
can accumulate energy directly from a pump or indi-
rectly from propagating Langmuir waves (Sec. V.C). In
particular, this discovery made simplified pictures of en-
ergy input to localized states possible and showed that
localized packets decouple from the driver and the re-
mainder of the turbulence as they collapse. It should be
noted, however, that nucleation is not universal—
collapse via direct modulational instability of waves is
possible under some circumstances.

(v) Development of a simplified two-component
model of strong turbulence, with one component con-
sisting of coherent packets and another comprised of
propagating waves (Sec. VI). Models of this type have
allowed scaling exponents to be determined analytically
for a wide variety of statistical quantities, including
mean values, probability distributions of field strengths
and density fluctuations, and wave-number spectra. The
results obtained have underlined the usefulness of statis-
tical measures to the study of strong turbulence.

Major numerical results obtained (see Sec. VII) have
included confirmation of the existence of self-similar
wave collapse, testing and verification of the Zakharov
equations, identification of renucleation in turbulent sys-
tems, demonstration that coherent packets are closely
packed in strong turbulence, calculation of the arrest
scale of collapse, and extensive testing and verification
of the scalings predicted by the two-component theory
of strong turbulence. Many of the experimental applica-
tions below have relied on multidimensional simulations
for their interpretation. Advances in high-speed comput-
ing in recent decades have allowed a close interplay to
develop between theory and numerics.

A range of experiments discussed in Secs. VIII and IX
have yielded evidence of strong turbulence and wave-
collapse phenomena. Subsequently, many experiments
have relied on strong-turbulence theory for their inter-
pretation. These include the following:

(i) Low-energy beam-plasma experiments, which pro-
vided evidence for soliton formation in one dimension,
collapse of individual packets in three dimensions, and
transit-time interactions with electrons.

(ii) Relativistic beam-plasma turbulence experiments,
whose field-strength distributions and interactions with
electrons were interpreted in terms of strong turbulence.
These experiments also allowed the arrest scale of col-
lapse amid turbulence to be estimated and showed evi-
dence of transit-time interactions.

(iii) Radio-plasma experiments, which demonstrated
the existence of transit-time interactions, the formation
of localized, ponderomotively supported cavities con-
taining trapped eigenstates with reduced frequencies.

(iv) Laser-plasma experiments, which have yielded
spectral evidence of many of the underlying nonlinear
processes, including ponderomotive force, self-focusing,
and collapse.

(v) Langmuir waves in the Earth’s foreshock, the
highest of which show evidence of possible wave col-
lapse during their convection downstream from the fore-
shock boundary.
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(vi) Ionospheric-modification experiments, whose
backscatter spectra appear to be explicable in terms of
collapse of Langmuir wave packets in the heated region,
but not in terms of previously proposed weak-
turbulence theories.

(vii) Laser-solid experiments, which exhibit self-
focusing, soliton formation, and a range of other nonlin-
ear interactions.

(viii) Observations of lower-hybrid waves at auroral
latitudes, many aspects of which are consistent with
wave-collapse theory, but which still pose a number of
unresolved questions.

(ix) Strongly magnetized beam-plasma experiments,
which have shown evidence of wave collapse and strong
turbulence.

Some experimental situations in which strong turbu-
lence has been proposed, but for which there is less evi-
dence, have also been discussed. These include some so-
lar radio sources, pulsar magnetospheres, and
astrophysical jets.

B. Open questions

This section lists some specific open questions, mostly
theoretical in nature. The next section gives a broader
perspective on future directions in the theory and appli-
cation of collapse and strong turbulence.

Some specific unresolved issues that could be usefully
addressed in the short to medium term include the fol-
lowing:

(i) Better quantitative understanding of the crossover
from weak to strong turbulence is needed, particularly
for waves of finite bandwidth and where both forms of
turbulence coexist. Such knowledge would facilitate ap-
plication of the correct theory in specific experimental
situations.

(ii) Quantitative understanding of the coupling of
nucleating states to random-phase background turbu-
lence is currently lacking. Coupling to a clamp driver is
better understood, but a more quantitative treatment
would also be useful. This is perhaps the least under-
stood aspect of the wave-packet (renucleation) cycle.

(iii) Connected to (ii) is the question of a possible
transition from nucleation-mediated collapse to direct
collapse as the damping of the ion response decreases. It
has been argued that there is a threshold for nucleated
collapse, because nucleation must be completed before
the nucleating well can disperse. Evidence for this has
been found in simulations, but a quantitative theoretical
description is still lacking.

(iv) Scaling theories of clamp-driven turbulence are
not as advanced as those for turbulence driven via a
plasma instability. Similarly, the theoretical forms of the
scalings have not been verified numerically in as much
detail. Quantitative calculations of the scalings of mean
quantities, spectra, and field statistics in clamp-driven
turbulence would thus be desirable, as would their com-
prehensive numerical verification. Such results are par-
ticularly important in the rescaling of numerical calcula-
tions to regimes that cannot be simulated directly.
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Further analysis of the threshold for nucleation in such
turbulence also seems warranted, along with more de-
tailed study of the means by which collapsing packets
form in subthreshold turbulence.

(v) An improved treatment of the effects of ambient
density fluctuations on wave collapse would be useful.
To date it has been argued that, if sufficiently large, such
fluctuations can disrupt nucleating packets, but a de-
tailed theory has yet to be developed. Ambient density
fluctuations, generated nonponderomotively, are signifi-
cant in type-III solar radio sources, ionospheric modifi-
cation, and other applications.

(vi) Strong-turbulence theory has succeeded in ex-
plaining scattering of relativistic electron beams in en-
ergy, but not in angle. Observed angular scattering ex-
ceeds theoretical predictions. Because of the
experimental complexities, it is not yet clear whether
this is the result of geometric effects, boundary condi-
tions, or discrepancies in interpretation, or whether it
represents a failure of the theory.

(vii) The anomalous decay of beam-driven strong tur-
bulence, after turnoff of the beam, has not been ex-
plained, although some suggestions have been made as
to the mechanism, including the possibility that specifi-
cally high-W effects play a role.

(viii) The statistics of the formation of intense laser
filaments should be investigated further, both theoreti-
cally and experimentally. In particular, the predicted
spatial power-law decay of a beam consisting of many
filaments invites an experimental test that would bear
closely on the statistical properties of strong turbulence
governed by the nonlinear Schrödinger equation.

(ix) Relating to (viii), the behavior of turbulence gov-
erned by the nonlinear Schrödinger equation is, some-
what paradoxically, less well understood than that of
turbulence governed by the Zakharov equations. This is
because refractive-index variations relax on the same
time scale as the burnout of intense fields, leaving little
or no remnant well. While this precludes the standard
nucleation mechanism, analogs have been suggested in
this case. It would be useful to resolve whether collaps-
ing packets form via a nucleation-like mechanism and/or
from random-field enhancements. As yet unexplained
changes in scaling exponents for nonlinear Schrödinger
turbulence imply that more than one mechanism may be
relevant, depending on the turbulence level. Studies of
this type could also yield predictions of the shape distri-
butions of collapsing wave packets governed by the non-
linear Schrödinger equation or the electromagnetic Za-
kharov equations (nonpotential fields).

(x) More work on particle heating during strong tur-
bulence could usefully be done using 2D particle-in-cell
or Vlasov methods. Increases in computing power are
making such calculations increasingly feasible.

(xi) For the purposes of treating interactions between
particles or waves and localized packets theoretically, a
reformulation of wave-particle and wave-wave interac-
tion theory in terms of generalized wave eigenstates,
rather than plane waves, would be advantageous. Such
an approach could potentially lead to a far more com-
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pact form of analysis by exploiting the naturally occur-
ring localized structures. Use of wavelets to represent
localized states suggests itself as a promising avenue to
explore.

C. Future directions

We now turn briefly from the specific questions raised
in the previous section to a more general perspective on
future theoretical and applied directions involving wave
collapse and strong turbulence. Some of the most prom-
ising avenues involve generalizations and applications to
magnetized, partially ionized, collisional, and dusty plas-
mas, and to optics. Generalized classes of plasmas are
involved in a host of applications in the laboratory,
space, and astrophysics, many of which were discussed
in Sec. IX. Much work is still needed in this area before
the theory reaches the same level of development as that
currently achieved for Langmuir phenomena, and the
huge variety of magnetized-plasma and other plasma
waves calls for overarching theories, rather than ad hoc,
case-by-case development of the necessary analysis. Op-
tical applications of the ideas discussed here are also
particularly promising. Ideas such as nucleation, origi-
nally developed in the context of Langmuir turbulence,
may have application in laser-dielectric or laser-
semiconductor interactions, for example.
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Lett. 19, 162 (1974)].

Showen, R. L., and D. M. Kim, 1978, J. Geophys. Res. 83, 623.
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